Skip to main content

Microtubules in the Nervous System

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 3))

Abstract

Neurons undergo various morphologic changes during development, including neuritogenesis, neurite outgrowth, neurite branching, and neurite retraction. Many studies have examined how microtubules (MTs) are reorganized or transported within the neurites of developing neurons and have revealed that MT dynamics are regulated by MT-interacting proteins and motor proteins, in concert with actin microfilaments. Here, I will describe recent progress in research on the behavior of MTs in the nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acebes A, Ferrus A (2000) Cellular and molecular features of axon collaterals and dendrites. Trends Neurosci 23:557–565

    Article  CAS  PubMed  Google Scholar 

  • Ahmad FJ, Hughey J, Wittmann T, Hyman A, Greaser M, Baas PW (2000) Motor proteins regulate force interactions between microtubules and microfilaments in the axon. Nat Cell Biol 2:276–280

    Article  CAS  PubMed  Google Scholar 

  • Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    Article  CAS  PubMed  Google Scholar 

  • Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194–205

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Ahmad FJ (2001) Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction. Trends Cell Biol 11:244–249

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci USA 85:8335–8339

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498

    Article  CAS  PubMed  Google Scholar 

  • Bahi-Buisson N, Poirier K, Boddaert N, Saillour Y, Castelnau L, Philip N, Buyse G, Villard L, Joriot S, Marret S, Bourgeois M, Van Esch H, Lagae L, Amiel J, Hertz-Pannier L, Roubertie A, Rivier F, Pinard JM, Beldjord C, Chelly J (2008) Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 45:647–653

    Article  CAS  PubMed  Google Scholar 

  • Benitez-King G, Ramirez-Rodriguez G, Ortiz L, Meza I (2004) The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Curr Drug Targets CNS Neurol Disord 3:515–533

    Article  CAS  PubMed  Google Scholar 

  • Bouquet C, Ravaille-Veron M, Propst F, Nothias F (2007) MAP1B coordinates microtubule and actin filament remodeling in adult mouse Schwann cell tips and DRG neuron growth cones. Mol Cell Neurosci 36:235–247

    Article  CAS  PubMed  Google Scholar 

  • Bradke F, Dotti CG (1999) The role of local actin instability in axon formation. Science 283:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Burnette DT, Ji L, Schaefer AW, Medeiros NA, Danuser G, Forscher P (2008) Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev Cell 15:163–169

    Article  CAS  PubMed  Google Scholar 

  • Burnette DT, Schaefer AW, Ji L, Danuser G, Forscher P (2007) Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones. Nat Cell Biol 9:1360–1369

    Article  CAS  PubMed  Google Scholar 

  • Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762:1094–1108

    CAS  PubMed  Google Scholar 

  • Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 22:7548–7557

    CAS  PubMed  Google Scholar 

  • da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704

    Article  PubMed  Google Scholar 

  • Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114:1179–1187

    CAS  PubMed  Google Scholar 

  • de Anda FC, Pollarolo G, Da Silva JS, Camoletto PG, Feiguin F, Dotti CG (2005) Centrosome localization determines neuronal polarity. Nature 436:704–708

    Article  PubMed  Google Scholar 

  • Dehmelt L, Smart FM, Ozer RS, Halpain S (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23:9479–9490

    CAS  PubMed  Google Scholar 

  • Dent EW, Barnes AM, Tang F, Kalil K (2004) Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci 24:3002–3012

    Article  CAS  PubMed  Google Scholar 

  • Dent EW, Callaway JL, Szebenyi G, Baas PW, Kalil K (1999) Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J Neurosci 19:8894–8908

    CAS  PubMed  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227

    Article  CAS  PubMed  Google Scholar 

  • Dent EW, Kalil K (2001) Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci 21:9757–9769

    CAS  PubMed  Google Scholar 

  • Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    Article  CAS  PubMed  Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    CAS  PubMed  Google Scholar 

  • El-Kadi AM, Soura V, Hafezparast M (2007) Defective axonal transport in motor neuron disease. J Neurosci Res 85:2557–2566

    Article  CAS  PubMed  Google Scholar 

  • Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME (2007) Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J Cell Biol 176:497–507

    Article  CAS  PubMed  Google Scholar 

  • Erturk A, Hellal F, Enes J, Bradke F (2007) Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J Neurosci 27:9169–9180

    Article  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A (2003) Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15:67–72

    Article  CAS  PubMed  Google Scholar 

  • Fallet-Bianco C, Loeuillet L, Poirier K, Loget P, Chapon F, Pasquier L, Saillour Y, Beldjord C, Chelly J, Francis F (2008) Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain 131:2304–2320

    Article  PubMed  Google Scholar 

  • Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12:469–476

    Article  CAS  PubMed  Google Scholar 

  • Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516

    Article  CAS  PubMed  Google Scholar 

  • Fukushima N (2004) LPA in neural cell development. J Cell Biochem 92:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T (2009) Posttranslational modifications of tubulin in the nervous system. J Neurochem 109:683–693

    Google Scholar 

  • Fukushima N, Morita Y (2006) Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons. Brain Res 1094:65–75

    Article  CAS  PubMed  Google Scholar 

  • Fukushima N, Weiner JA, Kaushal D, Contos JJA, Rehen SK, Kingsbury MA, Kim K-Y, Chun J (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol Cell Neurosci 20:271–282

    Article  CAS  PubMed  Google Scholar 

  • Galjart N (2005) CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 6:487–498

    Article  CAS  PubMed  Google Scholar 

  • Gallo G, Letourneau PC (1999) Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. J Neurosci 19:3860–3873

    CAS  PubMed  Google Scholar 

  • Georges PC, Hadzimichalis NM, Sweet ES, Firestein BL (2008) The yin-yang of dendrite morphology: unity of actin and microtubules. Mol Neurobiol 38:270–284

    Article  CAS  PubMed  Google Scholar 

  • Gerdes JM, Katsanis N (2005) Small molecule intervention in microtubule-associated human disease. Hum Mol Genet 14(Spec No 2):R291–R300

    Article  CAS  PubMed  Google Scholar 

  • Grabham PW, Seale GE, Bennecib M, Goldberg DJ, Vallee RB (2007) Cytoplasmic dynein and LIS1 are required for microtubule advance during growth cone remodeling and fast axonal outgrowth. J Neurosci 27:5823–5834

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Firestein BL, Zheng JQ (2008) Microtubules in dendritic spine development. J Neurosci 28:12120–12124

    Article  CAS  PubMed  Google Scholar 

  • Gundersen GG, Cook TA (1999) Microtubules and signal transduction. Curr Opin Cell Biol 11:81–94

    Article  CAS  PubMed  Google Scholar 

  • Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  CAS  PubMed  Google Scholar 

  • Hasaka TP, Myers KA, Baas PW (2004) Role of actin filaments in the axonal transport of microtubules. J Neurosci 24:11291–11301

    Article  CAS  PubMed  Google Scholar 

  • He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW (2005) Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol 168:697–703

    Article  CAS  PubMed  Google Scholar 

  • He Y, Yu W, Baas PW (2002) Microtubule reconfiguration during axonal retraction induced by nitric oxide. J Neurosci 22:5982–5991

    CAS  PubMed  Google Scholar 

  • Higuchi M, Lee VM, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2:131–150

    Article  CAS  PubMed  Google Scholar 

  • Hollenbeck P (2001) Cytoskeleton: microtubules get the signal. Curr Biol 11:R820–R823

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Viesselmann C, Nam S, Merriam E, Dent EW (2008) Activity-dependent dynamic microtubule invasion of dendritic spines. J Neurosci 28:13094–13105

    Article  CAS  PubMed  Google Scholar 

  • Jaworski J, Hoogenraad CC, Akhmanova A (2008) Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 40:619–637

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Mateos EM, Wandosell F, Reiner O, Avila J, Gonzalez-Billault C (2005) Binding of microtubule-associated protein 1B to LIS1 affects the interaction between dynein and LIS1. Biochem J 389:333–341

    Article  CAS  PubMed  Google Scholar 

  • Kalil K, Dent EW (2005) Touch and go: guidance cues signal to the growth cone cytoskeleton. Curr Opin Neurobiol 15:521–526

    Article  CAS  PubMed  Google Scholar 

  • Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnar Z, Pinon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JN, Cowan NJ, Nolan P, Chelly J, Flint J (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57

    Article  CAS  PubMed  Google Scholar 

  • Kerjan G, Gleeson JG (2007) Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet 23:623–630

    Article  CAS  PubMed  Google Scholar 

  • Kholmanskikh SS, Koeller HB, Wynshaw-Boris A, Gomez T, Letourneau PC, Ross ME (2006) Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat Neurosci 9:50–57

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Engel U, Rusch J, Scherrer S, Sheard K, Van Vactor D (2004) The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42:913–926

    Article  CAS  PubMed  Google Scholar 

  • Leung CL, Green KJ, Liem RK (2002) Plakins: a family of versatile cytolinker proteins. Trends Cell Biol 12:37–45

    Article  CAS  PubMed  Google Scholar 

  • Lewis SA, Lee MG, Cowan NJ (1985) Five mouse tubulin isotypes and their regulated expression during development. J Cell Biol 101:852–861

    Article  CAS  PubMed  Google Scholar 

  • Michaelis ML, Seyb KI, Ansar S (2005) Cytoskeletal integrity as a drug target. Curr Alzheimer Res 2:227–229

    Article  CAS  PubMed  Google Scholar 

  • Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A (2005) CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol 168:141–153

    Article  CAS  PubMed  Google Scholar 

  • Morris-Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, Haug V, Zeschnigk C, Martin P, Santos M, Vasconcelos C, Omran H, Kraus U, Van der Knaap MS, Schuierer G, Kutsche K, Uyanik G (2008) Refining the phenotype of α-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 74:425–433

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa N, Fujitani K, Tokunaga E, Furuya S, Inokuchi K (2007) The microtubule destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J Cell Sci 120:1447–1456

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa N, Sugisaki S, Tokunaga E, Fujitani K, Hayasaka T, Setou M, Inokuchi K (2008) N-acetyltransferase ARD1-NAT1 regulates neuronal dendritic development. Genes Cells 13:1171–1183

    CAS  PubMed  Google Scholar 

  • Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  CAS  PubMed  Google Scholar 

  • Palazzo AF, Joseph HL, Chen YJ, Dujardin DL, Alberts AS, Pfister KK, Vallee RB, Gundersen GG (2001) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541

    Article  CAS  PubMed  Google Scholar 

  • Paylor R, Hirotsune S, Gambello MJ, Yuva-Paylor L, Crawley JN, Wynshaw-Boris A (1999) Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn Mem 6:521–537

    Article  CAS  PubMed  Google Scholar 

  • Riederer BM (2007) Microtubule-associated protein 1B, a growth-associated and phosphorylated scaffold protein. Brain Res Bull 71:541–558

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609

    Article  CAS  PubMed  Google Scholar 

  • Roger B, Al-Bassam J, Dehmelt L, Milligan RA, Halpain S (2004) MAP2c, but not tau, binds and bundles F-actin via its microtubule binding domain. Curr Biol 14:363–371

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152

    Article  CAS  PubMed  Google Scholar 

  • Schaefer AW, Schoonderwoert VT, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146–162

    Article  CAS  PubMed  Google Scholar 

  • Shano S, Hatanaka K, Ninose S, Moriyama R, Tsujiuchi T, Fukushima N (2008) A lysophosphatidic acid receptor lacking the PDZ-binding domain is constitutively active and stimulates cell proliferation. Biochim Biophys Acta 1783:748–759

    Article  CAS  PubMed  Google Scholar 

  • Sonnenberg A, Liem RK (2007) Plakins in development and disease. Exp Cell Res 313:2189–2203

    Article  CAS  PubMed  Google Scholar 

  • Stanchi F, Corso V, Scannapieco P, Ievolella C, Negrisolo E, Tiso N, Lanfranchi G, Valle G (2000) TUBA8: a new tissue-specific isoform of α-tubulin that is highly conserved in human and mouse. Biochem Biophys Res Commun 270:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Stokin GB, Goldstein LS (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627

    Article  CAS  PubMed  Google Scholar 

  • Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739:280–297

    CAS  PubMed  Google Scholar 

  • Stroissnigg H, Trancikova A, Descovich L, Fuhrmann J, Kutschera W, Kostan J, Meixner A, Nothias F, Propst F (2007) S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nat Cell Biol 9:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Koike T (2007) Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 147:599–612

    Article  CAS  PubMed  Google Scholar 

  • Trivedi N, Marsh P, Goold RG, Wood-Kaczmar A, Gordon-Weeks PR (2005) Glycogen synthase kinase-3β phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. J Cell Sci 118:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Villasante A, Wang D, Dobner P, Dolph P, Lewis SA, Cowan NJ (1986) Six mouse α-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes. Mol Cell Biol 6:2409–2419

    CAS  PubMed  Google Scholar 

  • Wang L, Brown A (2002) Rapid movement of microtubules in axons. Curr Biol 12:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  CAS  PubMed  Google Scholar 

  • Witte H, Neukirchen D, Bradke F (2008) Microtubule stabilization specifies initial neuronal polarization. J Cell Biol 180:619–632

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1970) Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci USA 66:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49:614–635

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Ahmad FJ, Baas PW (1994) Microtubule fragmentation and partitioning in the axon during collateral branch formation. J Neurosci 14:5872–5884

    CAS  PubMed  Google Scholar 

  • Yu W, Qiang L, Solowska JM, Karabay A, Korulu S, Baas PW (2008) The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol Biol Cell 19:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Zhou FQ, Waterman-Storer CM, Cohan CS (2002) Focal loss of actin bundles causes microtubule redistribution and growth cone turning. J Cell Biol 157:839–849

    Article  CAS  PubMed  Google Scholar 

  • Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42:897–912

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Fukushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fukushima, N. (2011). Microtubules in the Nervous System. In: Nixon, R., Yuan, A. (eds) Cytoskeleton of the Nervous System. Advances in Neurobiology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6787-9_2

Download citation

Publish with us

Policies and ethics