Skip to main content

From Structure to Dynamics in Biological Networks

  • Chapter
  • First Online:
Book cover Design and Analysis of Biomolecular Circuits
  • 1737 Accesses

Abstract

Biological systems often display behaviour that is robust to considerable perturbation. In fact, experimental and computational work suggests that some behaviours are ‘structural’ in that they occur in all systems with particular qualitative features. In this chapter, some relationships between structure and dynamics in biological networks are explored. The emphasis is on chemical reaction networks, regarded as special cases of more general classes of dynamical systems termed interaction networks. The mathematical approaches described involve relating patterns in the Jacobian matrix to the dynamics of a system. Via a series of examples, it is shown how simple computations on matrices and related graphs can lead to strong conclusions about allowed behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stoichiometry classes are also sometimes referred to as ‘stoichiometric compatibility classes’.

  2. 2.

    Although conclusions for CRNs with P 0 or P 0 ( − ) Jacobian are stated in terms of the absence of multiple positive nondegenerate equilibria, additional structure, for example involving inflow and outflow of substrates, can imply a P or P ( − ) Jacobian, and thus the existence of no more than one equilibrium on all of state space.

  3. 3.

    There is some ambiguity in terminology in different strands of the literature. Cones referred to as ‘pointed’ here and in [9] are termed ‘salient’ in some references, with the word ‘pointed’ referring to cones containing the zero vector. Since all cones discussed here are closed, they are all ‘pointed’ in this other sense too.

References

  1. Angeli D, De Leenheer P, Sontag ED (2009a) Graph-theoretic characterizations of monotonicity of chemical reaction networks in reaction coordinates. J Math Biol. doi:10.1007/s00285-009-0309-0

    Google Scholar 

  2. Angeli D, Hirsch MW, Sontag E (2009b) Attractors in coherent systems of differential equations. J Diff Eq 246:3058–3076

    Article  MathSciNet  MATH  Google Scholar 

  3. Banaji M (2009) Monotonicity in chemical reaction systems. Dyn Syst 24(1):1–30

    Article  MathSciNet  MATH  Google Scholar 

  4. Banaji M (2010) Graph-theoretic conditions for injectivity of functions on rectangular domains. J Math Anal Appl 370:302–311

    Article  MathSciNet  MATH  Google Scholar 

  5. Banaji M, Angeli D (2010) Convergence in strongly monotone systems with an increasing first integral. SIAM J Math Anal 42(1):334–353

    Article  MathSciNet  MATH  Google Scholar 

  6. Banaji M, Craciun G (2009) Graph-theoretic approaches to injectivity and multiple equilibria in systems of interacting elements. Commun Math Sci 7(4):867–900

    MathSciNet  MATH  Google Scholar 

  7. Banaji M, Craciun G (2010) Graph-theoretic criteria for injectivity and unique equilibria in general chemical reaction systems. Adv Appl Math 44:168–184

    Article  MathSciNet  MATH  Google Scholar 

  8. Banaji M, Donnell P, Baigent S (2007) P matrix properties, injectivity and stability in chemical reaction systems. SIAM J Appl Math 67(6):1523–1547

    Article  MathSciNet  MATH  Google Scholar 

  9. Berman A, Plemmons R (1979) Nonnegative matrices in the mathematical sciences. Academic, New York

    MATH  Google Scholar 

  10. Brualdi RA, Shader BL (1995) Matrices of sign-solvable linear systems. Number 116 in Cambridge tracts in mathematics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  11. De Leenheer P, Angeli D, Sontag ED (2007) Monotone chemical reaction networks. J Math Chem 41(3):295–314

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  Google Scholar 

  13. Donnell P, Banaji M, Baigent S (2009) Stability in generic mitochondrial models. J Math Chem 46(2):322–339

    Article  MathSciNet  MATH  Google Scholar 

  14. Famili I, Palsson BO (2003) The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophys J 85:16–26

    Article  Google Scholar 

  15. Gale D, Nikaido H (1965) The Jacobian matrix and global univalence of mappings. Math Ann 159:81–93

    Article  MathSciNet  MATH  Google Scholar 

  16. Gantmacher FR (1959) The theory of matrices. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  17. Gouzé J-L (1998) Positive and negative circuits in dynamical systems. J Biol Sys 6:11–15

    Article  MATH  Google Scholar 

  18. Grimbs S, Selbig J, Bulik S, Holzhütter H-G, Steuer R (2007) The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol Syst Biol 3(146) doi:10.1038/msb4100186

    Google Scholar 

  19. Hirsch MW, Smith H (2005) Chapter monotone dynamical systems. In: Battelli F and Fečkan M (ed.) Handbook of differential equations: ordinary differential equations, vol II. Elsevier BV, Amsterdam, pp 239–357

    Google Scholar 

  20. Kafri WS (2002) Robust D-stability. Appl Math Lett 15:7–10

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaufman M, Soulé C, Thomas R (2007) A new necessary condition on interaction graphs for multistationarity. J Theor Biol 248(4):675–685

    Article  Google Scholar 

  22. Kunze H, Siegel D (2002a) A graph theoretic approach to strong monotonicity with respect to polyhedral cones. Positivity 6:95–113

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunze H, Siegel D (2002b) Monotonicity properties of chemical reactions with a single initial bimolecular step. J Math Chem 31(4):339–344

    Article  MathSciNet  MATH  Google Scholar 

  24. Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  Google Scholar 

  25. Maybee J, Quirk J (1969) Qualitative problems in matrix theory. SIAM Rev 11(1):30–51

    Article  MathSciNet  MATH  Google Scholar 

  26. Mierczyński, J (1987) Strictly cooperative systems with a first integral. SIAM J Math Anal 18(3):642–646

    Article  MathSciNet  MATH  Google Scholar 

  27. Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    Article  Google Scholar 

  28. Orth JD, Thiele I, Palsson BØ(2010) What is flux balance analysis? Nat Biotechnol 28:245–248

    Article  Google Scholar 

  29. Parthasarathy T (1983) On global univalence theorems volume 977 of Lecture notes in mathematics. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  30. Soulé C (2003) Graphic requirements for multistationarity. Complexus 1:123–133

    Article  Google Scholar 

  31. Thomson M, Gunawardena J (2009) Unlimited multistability in multisite phosphorylation systems. Nature 460:274–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murad Banaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banaji, M. (2011). From Structure to Dynamics in Biological Networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds) Design and Analysis of Biomolecular Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6766-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6766-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6765-7

  • Online ISBN: 978-1-4419-6766-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics