Skip to main content

ASTER VNIR and SWIR Radiometric Calibration and Atmospheric Correction

  • Chapter
  • First Online:
Book cover Land Remote Sensing and Global Environmental Change

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 11))

Abstract

As described in the previous chapter, ASTER relies on three separate subsystems to cover the full spectral range from the visible and near infrared (VNIR), short-wave infrared (SWIR), to the thermal infrared (TIR). Establishing the accuracy of data from all three subsystems requires both sensor-related calibration and atmospheric correction. The dominance of reflected solar energy in the VNIR and SWIR, and emitted terrestrial radiation in the TIR allows separate treatment of the two spectral regions. TIR calibration and correction are covered in a separate chapter. This chapter has two main goals: (1) to allow the user to understand ASTER’s radiometric calibration and atmospheric correction processes that enable conversion of VNIR and SWIR digital numbers (DN) to at-sensor reflectance and spectral radiance, and (2) to provide a succinct analysis of the SWIR crosstalk problem and its solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arai K (1988) Preliminary assessment of radiometric accuracy for MOS-1 sensors. Int J Remote Sens 9(1):5–12

    Article  Google Scholar 

  • Arai K (1997) In-flight test site cross calibration between mission instruments onboard same platform. Adv Space Res 19(9):1317–1328

    Article  ADS  Google Scholar 

  • Arai K, Liang X (2005) Method for the top of the atmosphere radiance estimation taking into account the polarization in down and up welling radiance calculations. J Jap Soc Photogramm Remote Sens 44(3):4–12

    Article  Google Scholar 

  • Arai K, Thome K (2000) Error budget analysis of the reflectance based vicarious calibration for satellite-based visible to near infrared radiometers. J Jap Soc Photogramm Remote Sens 39(1):99–105

    Article  Google Scholar 

  • Arai K, et al. (1994a) Requirements on preflight geometric calibration for ASTER

    Google Scholar 

  • Arai K, Fujisada H, et al. (1994b) End-to-End Data System Concept. JPL D-11199

    Google Scholar 

  • Barker JL, Dolan SK, Sabelhaus PA, Williams DL, Irons JR, Markham BL, Bolek JT, Scott SS, Thompson RJ, Rapp JJ, Arvidson TJ (1999) Landsat-7 mission and early results. SPIE 3870:299–311

    Article  ADS  Google Scholar 

  • Barnes RA, Eplee RE, Patt FS, McClain CR (1999) Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements. Appl Opt 38:4649–4664

    Article  ADS  Google Scholar 

  • Cosnefroy H, Leroy M, Briottet X (1996) Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens Environ 58:110–114

    Article  Google Scholar 

  • Folkman MA, Sandor-Leahy SR, Thordarson S, Hedman TR, Gleichauf DA, Casement S, Quon BH, Jarecke PJ (1997) Updated results from performance characterization and calibration of the TRWIS III Hyperspectral Imager. Proc SPIE 3118-17:142

    Article  ADS  Google Scholar 

  • Fraser RS, Bahethi OP, Al-Abbas AH (1977) The effect of the atmosphere on the classification of satellite observations to identify surface features. Remote Sens Environ 6:229–249

    Article  Google Scholar 

  • Fraser RS, Ferrare RA, Kaufman YJ, Markham BL, Mattoo S (1992) Algorithm for atmospheric correction of aircraft and satellite imagery. Int J Remote Sens 13:541–557

    Article  Google Scholar 

  • Fraser RS, Mattoo S, Yeh EN, McClain CR (1997) Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment. J Geophys Res 102:17 107–17 118

    Article  ADS  Google Scholar 

  • Gellman DI, Bigygar SF, Dinguirard MC, Henry PJ, Moran SM (1993) Review of SPOT-1 and 2 calibrations at White Sands from launch to the present. In: Proceedings SPIE, conf. no. 1938, pp 118–125

    Google Scholar 

  • Gesch DB (1994) Topographic data requirements for EOS global change research. U.S. Geological Survey

    Google Scholar 

  • Hagolle O, Goloub P, Deschamps P-Y, Cosnefroy H, Briottet X, Bailleul T, Nicolas J-M, Parol F, Lafrance B, Herman M (1999) Results of POLDER in-flight calibration. IEEE Trans Geosci Remote Sens 37:1550–1566

    Article  ADS  Google Scholar 

  • Herman BM, Browning SR (1965) A numerical solution to the equation of radiative transfer. J Atmospheric Sci 22:559–566

    Article  MathSciNet  ADS  Google Scholar 

  • Hewson RD, Cudahy TJ, Mizuhiko S, Ueda K, Mauger AJ (2005) Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens Environ 99:159–172

    Article  Google Scholar 

  • Holm RG, Jackson RD, Yuan B, Moran MS, Slater PN, Biggar SF (1989) Surface reflectance factor retrieval from Thematic Mapper data. Remote Sens Environ 27:47–57

    Article  Google Scholar 

  • Iwasaki A, Oyama E (2005) Correction of stray light and filter scratch blurring for ASTER imagery. IEEE Trans Geosci Remote Sens 43(12):2763–2768

    Article  ADS  Google Scholar 

  • Iwasaki A, Tonooka H (2005) Validation of crosstalk correction algorithm for ASTER/SWIR. IEEE Trans Geosci Remote Sens 43(12):2747–2751

    Article  ADS  Google Scholar 

  • Iwasaki A, Fujisada H, Akao H, Shindou O, Akagi S (2002) Enhancement of spectral separation performance for ASTER/SWIR. Proc SPIE 4486:42–50

    Article  ADS  Google Scholar 

  • Kaufman YJ (1985) The atmospheric effect on the separability of field classes measured from satellites. Remote Sens Environ 18:21–34

    Article  Google Scholar 

  • Kieffer HH, Widely RL (1996) Establishing the moon as a spectral radiance standard. J Atmos Ocean Technol 13:360–375

    Article  Google Scholar 

  • Kimes DS, Sellers PJ (1985) Inferring hemispherical reflectance of the Earth’s surface for global energy budgets from remotely sensed nadir or directional radiance values. Remote Sens Environ 18:205–223

    Article  Google Scholar 

  • Liang X, Arai K (2005) Method for aerosol refractive index and size distribution with the solar direct, diffuse, aureole and polarization radiance. J Remote Sens Soc Japan 25(4):357–366

    Google Scholar 

  • Moran MS, Jackson RD, Hart GF, Slater PN, Bartell RJ, Biggar SF, Gellman DI, Santer RP (1990) Obtaining surface reflectance factors from atmospheric and view angle corrected SPOT-1 HRV data. Remote Sens Environ 32:203–214

    Article  Google Scholar 

  • Moran MS, Jackson RD, Slater PN, Teillet PM (1992) Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sens Environ 41:169–184

    Article  Google Scholar 

  • Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens Environ 84:350–366

    Article  Google Scholar 

  • Slater PN, Jackson RD (1982) Atmospheric effects on radiation reflected from soil and vegetation as measured by orbital sensors using various scanning directions. Appl Opt 21:3923–3931

    Article  ADS  Google Scholar 

  • Stowe LL, Ignatov AM, Singh RR (1997) Development, validation, and potential enhancements to the second-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration. J Geophys Res 102:16 923–16 934

    Article  ADS  Google Scholar 

  • Teillet PM (1992) An algorithm for the radiometric and atmospheric correction of AVHRR data in the solar reflective. Remote Sens Environ 41:185–195

    Article  Google Scholar 

  • Thome KJ, Nandy P (2000) Accuracy of ground-reference calibration of imaging spectroradiometers at large sensor view angles. J Remote Sens Soc Japan 20:112–124

    Google Scholar 

  • Thome K, Arai K, Hook S, Kieffer H, Lang H, Matsunaga T, Ono A, Palluconi F, Sakuma F, Slater P, Takashima T, Tonooka H, Tsuchida S, Welch R, Zalewski E (1998) ASTER preflight and ­in-flight calibration and validation of level 2 products. IEEE Trans Geosci Remote Sens 36:4

    Google Scholar 

Download references

Acknowledgement

The authors would like to express special thanks to Dr. Fujisada (SILC), Dr. Ono (AIT), Dr. Sakuma (AIST), Dr. Tsuchida (AIST), Dr. Iwasaki (University of Tokyo), Dr. Slater (formally worked for University of Arizona), Dr. Biggar (University of Arizona), and Dr. Keiffer (USGS) for all their help and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arai, K., Thome, K., Iwasaki, A., Biggar, S. (2010). ASTER VNIR and SWIR Radiometric Calibration and Atmospheric Correction. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_5

Download citation

Publish with us

Policies and ethics