Skip to main content

ASTER Imaging and Analysis of Glacier Hazards

  • Chapter
  • First Online:
Land Remote Sensing and Global Environmental Change

Abstract

Most scientific attention to glaciers, including ASTER and other satellite-derived applications in glacier science, pertains to their roles in the following seven functions: (1) as signposts of climate change (Kaser et al. 1990; Williams and Ferrigno 1999, 2002; Williams et al. 2008; Kargel et al. 2005; Oerlemans 2005), (2) as natural reservoirs of fresh water (Yamada and Motoyama 1988; Yang and Hu 1992; Shiyin et al. 2003; Juen et al. 2007), (3) as contributors to sea-level change (Arendt et al. 2002), (4) as sources of hydropower (Reynolds 1993); much work also relates to the basic science of glaciology, especially (5) the physical phenomeno­logy of glacier flow processes and glacier change (DeAngelis and Skvarca 2003; Berthier et al. 2007; Rivera et al. 2007), (6) glacial geomorphology (Bishop et al. 1999, 2003), and (7) the technology required to acquire and analyze satellite images of glaciers (Bishop et al. 1999, 2000, 2003, 2004; Quincey et al. 2005, 2007; Raup et al. 2000, 2006ab; Khalsa et al. 2004; Paul et al. 2004a, b). These seven functions define the important areas of glaciological science and technology, yet a more pressing issue in parts of the world is the direct danger to people and infrastructure posed by some glaciers (Trask 2005; Morales 1969; Lliboutry et al. 1977; Evans and Clague 1988; Xu and Feng 1989; Reynolds 1993, 1998, 1999; Yamada and Sharma 1993; Hastenrath and Ames 1995; Mool 1995; Ames 1998; Chikita et al. 1999; Williams and Ferrigno 1999; Richardson and Reynolds 2000a, b; Zapata 2002; Huggel et al. 2002, 2004; Xiangsong 1992; Kääb et al. 2003, 2005, 2005c; Salzmann et al. 2004; Noetzli et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Cocha” is Quechua for “lake,” and “palca” means “valley” or “divided in two,” and is the specific lake, probably named for the nearby peak, Ranrapalca.

  2. 2.

    The Million Dollar Bridge, 128 other bridges, a highway, the Copper River and Northwestern Railway, and a telegraph line were built by the Kennecott Copper Corporation to move copper ore from the Kennecott mines to the Alaskan port of Cordova. Completed in 1911, the railway included 8 km built on a stagnant, forested, debris-covered surge lobe of Allen Glacier. The Million Dollar Bridge across the Copper River, damaged during construction in 1909 by a deadly winter GLOF, narrowly escaped destruction by a surge of Childs Glacier in 1911; from 1911 to 1938 it was used to move 600,000 metric tons of copper (10-year value of $200 million; at July 2008 prices, $5 billion). The $20-million project paid for itself and the purchase of Alaska from Russia seven times over, despite risks from glacier surges and floods, thaw of buried ground ice, and seismicity. The Million Dollar Bridge partly collapsed during the 1964 earthquake; it was repaired in 2005. The story highlights both hazards and lucrative possibilities even in precarious situations.

  3. 3.

    Terminology: Spanish aluvión (pl., aluviones), used in Andean geomorphology, refers to a flood or fast-moving debris flow – typically a flood moving abundant boulders and cobbles or low-viscosity mud with suspended gravel, boulders, and ice, descending rapidly through a glacial valley. Aluvión derives from the Latin alluvi and alluvin-, from alluere, meaning to wash against, and is related to the Latin alluvies, alluviei, alluvio, and alluvionis: sediment or flood plain deposited by a river; or lapping of waves, inundation, or flood. Variations on use of aluvión refer either to (1) any debris flow, hyperconcentrated flow, or flood emanating from mountains, or (2) mass flows and floods triggered by or involving glaciers (this is our use). In the Himalaya, a subset of aluviones is termed Glacial Lake Outburst Floods (GLOFs). Icelandic jökulhlaup refers to outburst floods or debris floods from glacier-stored waters, with or without involvement of volcanic activity (Thorarinsson 1939). A lahar (Javanese) is any aqueous mass flow from a volcano; many, but not all lahars involve volcanic interactions with glaciers.

  4. 4.

    GLIMS was not consulted before NASA issued the press releases, and had no role in making or disseminating the interpretation that spurred the Palcacocha Crisis public relations disaster. Several GLIMS researchers (including some authors) played a back-scene role in quickly identifying weaknesses of NASA’s interpretation. The first author also helped to calm the public, to deflect some further inaccurate media reporting, and to defuse the explosive mix of anxiety, anger, and mistrust that developed among Huaraz residents; he also helped potential litigants to see the likely unintended destructive effect of a class action on NASA’s Earth Observing System (which was under severe budgetary and political stress) and on the interests of all the nations utilizing Earth remote sensing data.

References

  • Ames A (1998) A documentation of glacier tongue variations and lake development in the Cordillera Blanca, Perú. Z Gletsch Glazialgeol 34:1–36

    Google Scholar 

  • Arendt AA, Echelmeyer KA, Harrison WD, Lingle CS, Valentine VB (2002) Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science 297:382–385

    Article  ADS  Google Scholar 

  • Baker DN, Worden SP (2008) The large benefits of small-satellite missions. EOS Trans Am Geophys Union 89(33):301–302

    Article  ADS  Google Scholar 

  • Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon, P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108:327–338

    Article  Google Scholar 

  • Bhattacharya S (2003) Glacier crack places Peruvian city in peril. New Sci. http://www.newscientist.com/news/news.jsp?id=ns99993634

  • Bishop MP, Shroder JF Jr, Hickman BL (1999) SPOT panchromatic imagery and neural networks for information extraction in a complex mountain environment. Geocarto Int 14(2):19–28

    Article  Google Scholar 

  • Bishop MP, Kargel J, Kieffer H, MacKinnon DJ, Raup BH, Shroder JF (2000) Remote sensing science and technology for studying glacier processes in high Asia. Ann Glaciol 31:164–170

    Article  ADS  Google Scholar 

  • Bishop MP, Shroder JF Jr, Colby JD (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology 55:345–361

    Article  ADS  Google Scholar 

  • Bishop MP, Barry RG, Bush ABG, Copeland L, Dwyer JL, Fountain AG, Haeberli W, Hall DK, Kääb A, Kargel JS, Molnia BF, Olsenholler JA, Paul F, Raup BH, Shroder JF, Trabant DC, Wessels R (2004) Global Land Ice Measurements from Space (GLIMS): remote sensing and GIS investigations of the Earth’s cryosphere. Geocarto Int 19(2):57–85

    Article  Google Scholar 

  • Carey M (2005) Living and dying with glaciers: peoples’ historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change 47:122–134

    Article  MathSciNet  ADS  Google Scholar 

  • Chikita K, Jha J, Yamada T (1999) Hydrodynamics of a supraglacial lake and its effect on the basin expansion: Tsho Rolpa, Rolwaling Valley, Nepal Himalaya. Arctic Antarctic Alpine Res 31:58–70

    Article  Google Scholar 

  • DeAngelis H, Skvarca P (2003) Glacier surge after ice shelf collapse. Science 299:1560–1562

    Article  ADS  Google Scholar 

  • Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. In: Bonnard C (ed) Landslides – Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, pp 1153–1158

    Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10(1–4):107–128

    Article  ADS  Google Scholar 

  • Farber DL, Hancock G (2005) Uplift and topography formation in the Cordillera Blanca, Central Peruvian Andes. Eur Geosci Union Geophys Res Abstr 7:10374

    Google Scholar 

  • Fink W, Datta A, Baker V (2005) AGFA: (Airborne) automated geologic field analyzer. Geochim Cosmochim Acta 69(10S):A535

    ADS  Google Scholar 

  • Fink W, Datta A, Dohm JM, Tarbell MA, Jobling FM, Furfaro R, Kargel JS, Schulze-Makuch D, Baker V (2008) Automated global feature analyzer (AGFA) – a driver for tier-scalable reconnaissance. In: IEEE Aerospace Conference Proceedings, paper no. 1273, Big Sky, Montana

    Google Scholar 

  • Furfaro R, Dohm JM, Fink W (2006) Fuzzy logic expert system for tier-scalable planetary reconnaissance. In: Ninth International Conference on Space Operations, AIAA, Rome, Italy, June 19–23, 2006

    Google Scholar 

  • Furfaro R, Dohm JM, Fink W, Kargel JS, Schulze-Makuch D, Fairén AG, Ferré PT, Palmero-Rodriguez A, Baker VR, Hare TM, Tarbell M, Miyamoto HH, Komatsu G (2008a) The search for life beyond earth through fuzzy expert systems. Planet Space Sci 56:448–472

    Article  ADS  Google Scholar 

  • Furfaro R, Lunine J, Kargel JS, Fink W (2008b) Intelligent systems for the autonomous exploration of titan and enceladus. In: Space Exploration Technology Conference, Proceedings of the SPIE, Orlando, FL, March 2008

    Google Scholar 

  • Garver JI, Schiffman CR, Perry SE (2003) Rapid tectonic exhumation of the Cordillera Blanca. In: Annual Meeting, Geological Society of America, Seattle, November 2–5, 2003, Abstract no. 169-9

    Google Scholar 

  • Georges C (2004) 20th-century glacier fluctuations in the Tropical Cordillera Blanca, Peru. Arctic Antarctic Alpine Res 36(1):100–107

    Article  Google Scholar 

  • Georges C (2005) Recent glacier fluctuations in the tropical Cordillera Blanca and aspects of the climate forcing. Ph.D. Dissertation, Leopold-Franzens-Universität

    Google Scholar 

  • Haritashya UK, Singh P, Kumar N, Gupta RP (2006) Suspended sediment from the Gangotri Glacier: Quantification, variability and associations with discharge and air temperature. J Hydrol 321:116–130

    Article  Google Scholar 

  • Hastenrath S, Ames A (1995) Recession of Yanamarey Glacier in Cordillera Blanca, Perú, during the 20th century. J Glaciol 41:191–196

    Google Scholar 

  • Hubbard B,, Heald A, Reynolds JM, Quincey D, Richardson SD, Zapata M, Santillan N, Hambrey MJ (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264

    Article  ADS  Google Scholar 

  • Huggel C, Delgado H (2000) Glacier monitoring at Popocatépetl volcano, México: glacier shrinkage and possible causes. In: Hegg C, Vonder Muhl D (eds) Beitrage zur Geomorphologie. Proceedings der Fachtagung der Schweizerischen Geomorphologischen Gesellschaft, Bramois, WSL Birmensdorf, pp 97–106

    Google Scholar 

  • Huggel C, Kääb A, Haeberli W, Teysseire P, Paul F (2002) Satellite and aerial imagery for analysing high mountain lake hazards. Can Geotech J 39(2):316–330

    Article  Google Scholar 

  • Huggel C, Kääb A, Haeberli W (2003) Regional-scale models of debris flows triggered by lake outbursts: the June 25, 2001 debris flow at Täsch (Switzerland) as a test study. In: Rickenmann D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 1151–1162

    Google Scholar 

  • Huggel C, Kääb A, Salzmann N (2004) GIS-based modeling of glacial hazards and their interactions using Landsat TM and Ikonos imagery. Norwegian J Geogr 58:61–73

    Google Scholar 

  • Juen I, Kaser G, Georges C (2007) Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Global Planet Change 59:37–48

    Article  ADS  Google Scholar 

  • Kääb A (2005) Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens Environ 94:463–474

    Article  Google Scholar 

  • Kääb A, The GAPHAZ Working Group (2006) Towards a set of general recommendations for assessing glacier and permafrost hazards in mountains. Geophys Res Abstr 8:04608, SRef-ID: 1607-7962/gra/EGU06-A-04608

    Google Scholar 

  • Kääb A, Wessels R, Haeberli W, Huggel C, Kargel J, Khalsa SJS (2003) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. EOS Trans Am Geophys Union 84(13):117–121

    Article  ADS  Google Scholar 

  • Kääb A, Reynolds JM, Haeberli W (2005) Glacier and permafrost hazards in high mountains. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions (a state of knowledge overview). Advances in Global Change Research. Springer, Dordrecht, pp 225–234

    Google Scholar 

  • Kargel JS, Abrams MJ, Bishop MP, Bush A, Hamilton G, Jiskoot H, Kääb A, Kieffer HH, Lee EM, Paul F, Rau F, Raup B, Shroder JF, Soltesz DL, Stearns L, Wessels R (2005) Multispectral imaging contributions to Global Land Ice Measurements from Space. Remote Sens Environ 99:187–219

    Article  Google Scholar 

  • Kaser G, Georges C (2003) A potential disaster in the Icy Andes: a regrettable blunder. University of Innsbruck, Austria. Available online:http://www.uibk.ac.at/geographie/forschung/klima-eis/tropic/huaraz/huaraz.pdf

  • Kaser G, Ames A, Zamora M (1990) Glacier fluctuations and climate in the Cordillera Blanca, Peru. Ann Glaciol 14:136–140

    ADS  Google Scholar 

  • Kattelmann R (2003) Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Nat Hazards 28:145–154

    Article  Google Scholar 

  • Khalsa SJS, Dyurgerov MB, Khromova T, Raup BH, Barry RG (2004) Space-based mapping of glacier changes using ASTER and GIS tools. IEEE Trans Geosci Remote Sens 42:2177–2183

    Article  ADS  Google Scholar 

  • Kinzl H (1941) Die Andenkundfahrt des Deutschen Alpenvereins nach Peru im Jahr 1939. Zeitschrift des Deutschen Alpenvereins. München

    Google Scholar 

  • Klimes J, Vilímek V, Zapata M, Santilán N (2005) Influence of rapid glacial tongue retreat on a surface area of the glacial lakes in the Cordillera Blanca, Peru. Geophys Res Abstr 7:06767, SRef-ID: 1607-7962/gra/EGU05-A-06767

    Google Scholar 

  • Lliboutry LA, Morales Arnao B, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Perú, I: Historical failures of morainic dams, their causes and prevention. J Glaciol 18(79):239–254

    Google Scholar 

  • Mamdani EH (1977) Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans Comp 26(12):1182–1191

    Article  MATH  Google Scholar 

  • Mark BG (2002) Observations of modern deglaciation and hydrology in the Cordillera Blanca. Acta Montana A Geodynamica 19(123):23–36

    Google Scholar 

  • Montario MJ (2001) Exhumation of the Cordillera Blanca, Northern Peru, based on apatite fission track analysis. Unpublished Thesis, Department of Geology, Union College

    Google Scholar 

  • Mool PK (1995) Glacier lake outburst floods in Nepal. J Nepal Geol Soc 11:273–280

    Google Scholar 

  • Morales B (1969) Las lagunas y glaciares de la Cordillera Blanca y sucontrol. Revista Peruana de Andinismo y Glaciologica 8:76–79

    Google Scholar 

  • Morales Arnao B (1998) Desglaciación y disminución de recursoshídricos. Bol Soc Geogr Lima 111:7–20

    Google Scholar 

  • Noetzli J, Huggel C, Hoelzle M, Haeberli W (2006) GIS-based modelling of rock-ice avalanches from Alpine permafrost areas. Comput Geosci 10:161–178. DOI 10.1007/s10596-005-9017z

    Article  MATH  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677

    Article  ADS  Google Scholar 

  • Ojeda N (1974) Consolidacion laguna Palcacocha. Electroperu, Huarás 42 pp

    Google Scholar 

  • Paul F, Huggel C, Kääb A (2004a) Mapping of debris-covered glaciers using multispectral and DEM classification techniques. Remote Sens Environ 89(4):510–518

    Article  Google Scholar 

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004b) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402. DOI 10.1029/2004GL020816

    Article  ADS  Google Scholar 

  • Portocarrero C (1995) Retroceso de glaciares en el Perú: consecuencias sobre los recursos hídricos y los riesgos geodinámicos. Bull Inst Fr Etudes Andines 24(3):697–706

    Google Scholar 

  • Quincey DJ, Lucas RM, Richardson SD, Glasser NF, Hambrey MJ, Reynolds JM (2005) Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progr Phys Geogr 29(4):475–505

    Article  Google Scholar 

  • Quincey DJ, Richardson SD, Luckman A, Lucas RM, Reynolds JM, Hambrey MJ, Glasser NF (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet Change 56:137–152

    Article  ADS  Google Scholar 

  • Racoviteanu A, Arnaud Y (2005) The 2003 SPOT5-derived glacier inventory for Cordillera Blanca, Peru: A contribution to the GLIMS Geospatial Glacier Database. Abstract for the New Zealand GLIMS Workshop

    Google Scholar 

  • Rana B, Shrestha AB, Reynolds JM, Aryal R, Pokhrel AP, Budhathoki KP (2000) Hazard assessment of the Tsho Rolpa Glacier Lake and ongoing remediation measures. J Nepal Geol Soc 22:563–570

    Google Scholar 

  • Raup B, Kieffer H, Hare T, Kargel J (2000) Generation of data acquisition requests for the ASTER satellite instrument for monitoring a globally distributed target. IEEE Trans Geosci Remote Sens 38:1105–1112

    Article  ADS  Google Scholar 

  • Raup B, Kääb A, Kargel JS, Bishop MP, Hamilton G, Lee E, Paul F, Rau F, Soltesz D, Khalsa SJS, Beedle M, Helm C (2006a) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput Geosci. DOI 10.1016/j.cageo.2006.05.015

    Google Scholar 

  • Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R and Arnaud Y (2006b) The GLIMS Geospatial Glacier Database: a new tool for studying glacier change. Global Planet Change 56(1–2):101–110

    ADS  Google Scholar 

  • Reynolds JM (1993) The development of a combined regional strategy for power generation and natural hazard risk assessment in a high-altitude glacial environment: an example from the Cordillera Blanca, Peru. In: Merriman PA, Browitt CWA (eds) Natural disasters: protecting vulnerable communities. Thomas Telford, London, pp 38–50

    Google Scholar 

  • Reynolds JM (1998) Managing the risks of glacial flooding at hydro plants. Hydro Rev Worldwide 6 (2):18–22

    Google Scholar 

  • Reynolds JM (1999) Photographic feature: Glacial hazard assessment at Tsho Rolpa, Rolwaling, Central Nepal. Q J Eng Geol 32(3):209–214

    Article  Google Scholar 

  • Reynolds JM, Dolecki A, Portocarrero C (1998) The construction of a drainage tunnel as part of glacial lake hazard mitigation at Hualcán, Cordillera Blanca, Peru. In: Maund J, Eddleston M (eds) Geohazards in engineering geology, vol. 15. Geological Society Engineering Group Special Publication, London, pp 41–48

    Google Scholar 

  • Richardson SD, Reynolds JM (2000a) Degradation of ice-cored moraine dams: Implications for hazard development. In: Nakawo M, Raymond CF, Fountain A (eds) Debris-covered glaciers, vol. 264. International Association of Hydrological Sciences Publication, Seattle, WA, pp 187–197

    Google Scholar 

  • Richardson SD, Reynolds JM (2000b) An overview of glacial hazards in the Himalayas. Q Int 65–66:31–47

    Article  Google Scholar 

  • Rivera A, Benham T, Casassa G, Bamber J, Dowdeswell JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global Planet Change 59:126–137

    Article  ADS  Google Scholar 

  • Ross TJ (2004) Fuzzy logic with engineering applications, 2nd edn. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  • Salzmann N, Kääb A, Huggel C, Allgöwer B (2004) Assessment of the hazard potential of ice avalanches using remote sensing and GIS-modelling. Norwegian J Geogr 58:74–84

    Google Scholar 

  • Shiyin L, Wenxin S, Yongping S, Gang L (2003) Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J Glaciol 49:117–124

    Article  Google Scholar 

  • Silverio W, Jaquet J-M (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ 95:342–350

    Article  Google Scholar 

  • State of Alaska (2007) All-hazard risk mitigation plan, p. 91, October 2007. http://www.ak-prepared.com/plans/pdf_docs/StateHazardMitigationPlan07/5-2%20Floods.pdf

  • Steitz DE and Buis A (2003) Peril in Peru? NASA takes a look at menacing glacier. NASA Press Release 03-138, April 11, 2003. http://www.nasa.gov/home/hqnews/2003/apr/HP_News_03138.html. See also http://photojournal.jpl.nasa.gov/catalog/PIA03899 and http://photojournal.jpl.nasa.gov/catalog/PIA03899,OrigCaption

  • Thorarinsson S (1939) The ice-dammed lakes of Iceland, with particular reference to their value as indicators of glacier oscillations. Geogr Ann 21:216–242

    Google Scholar 

  • Trask PD (1953) El problema de los aluviones de la Cordillera Blanca. Bol Soc Geogr Lima 70:1–75

    Google Scholar 

  • Wessels R, Kargel JS, Kieffer HH (2002) ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Ann Glaciol 34:399–408

    Article  ADS  Google Scholar 

  • Williams RS, Ferrigno JG (1999) Glacier Hazards. In: Glaciers of South America, vol. I. http://pubs.usgs.gov/prof/p1386i/peru/hazards.html

  • Williams RS, Ferrigno JG (eds) (2002) Glaciers of North America (vol. J) and other volumes in the series Satellite Image Atlas of Glaciers of the World, U.S. Geological Survey Prof. Paper 1386-J, p. 405, and other volumes in Prof. Paper 1386. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Williams RS, Ferrigno JG (eds), Contributing Authors (2008, estimated publication) Introduction (volume A) to series, Satellite Image Atlas of the Glaciers of the World, U.S. Geological Survey Professional Paper 1386-A (State of the Earth’s Cryosphere at the Beginning of the 21st Century): Glaciers, Snow Cover, Floating Ice, and Permafrost

    Google Scholar 

  • Willis IC, Richards KS, Sharp MJ (1996) Links between proglacial stream-suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway. Hydrological Processes 10:629–648

    Article  ADS  Google Scholar 

  • Wolfe DFG (2009) Glacier dammed lakes impacting different Alaskan drainages after 30 years. In: American Water Resources Association Spring Specialty Conference, Extended Abstracts, Anchorage

    Google Scholar 

  • Xiangsong Z (1992) Investigation of glacier bursts of the Yarkant River in Xinjiang, China. Ann Glaciol 16:135–139

    Google Scholar 

  • Xu D, Feng Q (1989) Characteristics of dangerous glacier lakes and their outburst, Tibet, Himalaya Mountain. Acta Geogr Sinica 44 (4):343–345

    MathSciNet  Google Scholar 

  • Yamada T, Motoyama H (1988) Contribution of glacier meltwater to runoff in glacierized watersheds in the Langtang Valley, Nepal Himalayas. Bull Glacier Res 6:65–74

    Google Scholar 

  • Yamada T, Sharma CK (1993) Glacier lakes and outburst floods in the Nepal Himalaya. Int Assoc Hydrol Sci Publ 218:319–330

    Google Scholar 

  • Yang Z, Hu X (1992) Study of glacier meltwater resources in China. In: Hooke RL (ed) Symposium on mountain glaciology Lanzhou, Gansu Province, China, 26–30 August 1991. Proc Ann Glaciol 16:141–145

    Google Scholar 

  • Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca. Acta Montana A Geodynamica 19(123):23–36

    Google Scholar 

  • Zapata ML, Gómez RJL, Rapre AC, Santillán NP, Montalvo CA, Lizarme GG (2004) Memoria Annual 2003. INRENA, Huarás, 170 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Kargel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kargel, J. et al. (2010). ASTER Imaging and Analysis of Glacier Hazards. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_15

Download citation

Publish with us

Policies and ethics