Skip to main content

Physical and Mathematical Fundamentals

  • Chapter
  • First Online:
  • 1067 Accesses

Abstract

This chapter provides a short overview on the basics of CMOS transistor modeling with respect to deep submicron requirements and mathematical approaches to analyze variations in the design process. Technical terms are going to be defined and explained; physical processes and mathematical theories will be illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Whether the symbol y refers to the value or to the function should be evident from the context.

  2. 2.

    \(\frac{1} {{\sigma }^{2}} \sim {\Sigma }^{-1}\) and erf\(\left ( \frac{c} {\sqrt{2}}\right ) = \mathcal{P}\left (\frac{1} {2}, \frac{{c}^{2}} {2} \right ).\)

  3. 3.

    PCA can be applied in the same manner.

References

  1. Shichman, H., Hodges, D.A.: Modeling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid-State Circuits 3(5), 285–289 (1968)

    Article  Google Scholar 

  2. Meyer, J.E.: MOS models and circuit simulation. RCA Review 32, 42–63 (1971)

    Google Scholar 

  3. Ward, D.E., Dutton, R.W.: A charge-oriented model for MOS transistor capacitances. IEEE J. Solid-State Circuits 13(5), 703–708 (1978)

    Article  Google Scholar 

  4. Foty, D.P.: MOSFET Modeling with SPICE - Principles and Practice. Prentice Hall, Upper Saddle River, NJ (1997)

    Google Scholar 

  5. Sheu, B.J., Scharfetter, D.L., Ko, P.K., Jen, M.C.: BSIM Berkeley short-channel IGFET model for MOS transistors. IEEE J. Solid-State Circuits 22(4), 558–566 (1987)

    Article  Google Scholar 

  6. Synopsys: HSPICE MOSFET Models Manual, version z-2006.03 edn. (2007). Chapter 6

    Google Scholar 

  7. Liu, W.: MOSFET Models for SPICE Simulation, Including BSIM3v3 and BSIM4. John Wiley & Sons, New York (2001)

    Google Scholar 

  8. Enz, C.C., Krummenacher, F., Vittoz, E.A.: An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low current applications. J. Analog Integr. Circuits Signal Process 8, 83–114 (1995)

    Article  Google Scholar 

  9. Compact Model Council. http://www.geia.org/index.asp?bid=597

  10. BSIM3, BSIM4 homepage. http://www-device.eecs.berkeley.edu/~bsim3/

  11. Miura-Mattausch, M., Feldmann, U., Rahm, A., Bollu, M., Savignac, D.: Unified complete MOSFET model for analysis of digital and analog circuits. IEEE Trans. CAD/ICAS 15(1), 1–7 (1996)

    Google Scholar 

  12. Gildenblat, G., Li, X., W.Wu, Wang, H., Jha, A., van Langevelde, R., Smit, G., Scholten, A., Klaassen, D.: PSP: An advanced surface-potential-based MOSFET model for circuit simulation. Electron Devices, IEEE Transactions on 53(9), 1979–1993 (2006)

    Google Scholar 

  13. PSP homepage. http://pspmodel.asu.edu/

  14. HISIM homepage. http://home.hiroshima-u.ac.jp/usdl/HiSIM.html

  15. Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd Edn. McGraw-Hill, New York (1999)

    Google Scholar 

  16. Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press (1998)

    Google Scholar 

  17. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: Sub-threshold Design for Ultra Low-Power Systems. Springer (2006)

    Google Scholar 

  18. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38, 114 ff. (1965)

    Google Scholar 

  19. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  20. Rabaey, J.: Low Power Design Essentials. Springer, Boston, MA (2009). DOI 10. 1007/978-0-387-71713-5

    Google Scholar 

  21. Kenyon, C., Kornfeld, A., Kuhn, K., Liu, M., Maheshwari, A., Shih, W., Sivakumar, S., Taylor, G., VanDerVoorn, P., Zawadzki, K.: Managing process variation in Intel’s 45nm CMOS technology. Intel Technology Journal 12(2) (2008). URL http://www.intel.com/technology/itj/2008/v12i2/3-managing/1-abstract.htm

  22. Asenov, A.: Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 um MOSFET’s: A 3-D “atomistic” simulation study. IEEE Transactions on Electron Devices 45(12), 2505–2513 (1998). DOI 10.1109/16.735728

    Google Scholar 

  23. Diaz, C.H., Tao, H.J., Ku, Y.C., Yen, A., Young, K.: An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling. IEEE Electron Device Letters 22(6), 287–289 (2001). DOI 10.1109/55.924844

    Article  Google Scholar 

  24. Asenov, A., Kaya, S., Davies, J.H.: Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations. IEEE Transactions on Electron Devices 49(1), 112–119 (2002). DOI 10.1109/16.974757

    Article  Google Scholar 

  25. Kaushik, V.S., O’Sullivan, B.J., Pourtois, G., Van Hoornick, N., Delabie, A., Van Elshocht, S., Deweerd, W., Schram, T., Pantisano, L., Rohr, E., Ragnarsson, L.A., De Gendt, S., Heyns, M.: Estimation of fixed charge densities in hafnium-silicate gate dielectrics. IEEE Transactions on Electron Devices 53(10), 2627–2633 (2006). DOI 10.1109/TED.2006.882412

    Article  Google Scholar 

  26. Lucovsky, G.: Intrinsic limitations on the performance and reliability of high-k gate dielectrics for advanced silicon devices. In: Proc. IEEE Int. Integrated Reliability Workshop Final Report (2005). DOI 10.1109/IRWS.2005.1609592

    Google Scholar 

  27. Capodieci, L.: From optical proximity correction to lithography-driven physical design (1996-2006): 10 years of resolution enhancement technology and the roadmap enablers for the next decade. In: Proceedings of SPIE, vol. 6154 (3) (2006)

    Google Scholar 

  28. Nag, S., Chatterjee, A., Taylor, K., Ali, I., O’Brien, S., Aur, S., Luttmer, J.D., Chen, I.C.: Comparative evaluation of gap-fill dielectrics in shallow trench isolation for sub-0.25 /spl mu/m technologies. In: Proc. Int. Electron Devices Meeting IEDM ’96, pp. 841–845 (1996). DOI 10.1109/IEDM.1996.554111

    Google Scholar 

  29. Tsang, Y.L., Chattopadhyay, S., Uppal, S., Escobedo-Cousin, E., Ramakrishnan, H.K., Olsen, S.H., O’Neill, A.G.: Modeling of the threshold voltage in strained si/si1-x gex/si1-ygey(x-y) cmos architectures. IEEE Transactions on Electron Devices 54(11), 3040–3048 (2007). DOI 10.1109/TED.2007.907190

    Article  Google Scholar 

  30. Al-Bayati, A., Graoui, H., Spear, J., Ito, H., Matsunaga, Y., Ohuchi, K., Adachi, K., Miyashita, K., Nakayama, T., Oowada, M., Toyoshima, Y.: Advanced CMOS device sensitivity to USJ processes and the required accuracy of doping and activation. In: Proc. 14th Int. Conf. Ion Implantation Technology 2002, pp. 185–188 (2002). DOI 10.1109/IIT.2002.1257969

    Google Scholar 

  31. Lorenz, J., Bär, E., Clees, T., Jancke, R., Salzig, C., S., S.: Hierarchical simulation of process variations and their impact on circuits and systems: Methodology. IEEE Trans. on Electron Devices, Special Issue Vol. 58(8) (2011), pp. 2218–2226

    Google Scholar 

  32. Lorenz, J., Bär, E., Clees, T., Jancke, R., Salzig, C., S., S.: Hierarchical simulation of process variations and their impact on circuits and systems: Results. IEEE Trans. on Electron Devices, Special Issue Vol. 58(8) (2011), pp. 2218–2226

    Google Scholar 

  33. Jancke, R., Kampen, C., Kilic, O., Lorenz, J.: Hierarchischer ansatz für die monte-carlo-simulation komplexer mixed-signal-schaltungen. In: 11. ITG/GMM-Fachtagung ANALOG. Erfurt (2010)

    Google Scholar 

  34. Yamaoka, M., Onodera, H.: A detailed vth-variation analysis for sub-100-nm embedded SRAM design. In: Proc. IEEE Int. SOC Conf, pp. 315–318 (2006). DOI 10.1109/SOCC.2006.283905

    Google Scholar 

  35. Pelgrom, M.J.M., Duinmaijer, A.C.J., Welbers, A.P.G.: Matching properties of mos transistors. IEEE Journal of Solid-State Circuits 24(5), 1433–1439 (1989). DOI10.1109/JSSC.1989.572629

    Google Scholar 

  36. Petzold, L., Li, S., Cao, Y., Serban, R.: Sensitivity analysis of differential-algebraic equations and partial differential equations. Computers & Chemical Engineering 30(10-12), 1553 – 1559 (2006). DOI 10.1016/j.compchemeng.2006.05.015

    Article  Google Scholar 

  37. Özyurt, D.B., Barton, P.I.: Cheap second order directional derivatives of stiff ODE embedded functionals. SIAM J. Sci. Comput. 26, 1725–1743 (2005). DOI 10.1137/030601582

    Article  MathSciNet  MATH  Google Scholar 

  38. Cao, Y., Li, S.T., Petzold, L., Serban, R.: Adjoint sensitivity analysis or differential-algebraic equations: The adjoint DAE system and its numerical solution. Siam Journal on Scientific Computing 24(1), 1076–1089 (2003). DOI 10.1137/ S1064827501380630

    Article  MathSciNet  MATH  Google Scholar 

  39. Sakurai, T., Newton, A.R.: Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-State Circuits SC 25(2), 584–594 (1990)

    Article  Google Scholar 

  40. Bowman, K.A., Austin, B.L., Eble, J.C., Tang, X., Meindl, J.D.: A physical alpha-power law mosfet model. IEEE Journal of Solid-State Circuits 34(10), 1410–1414 (1999). DOI 10.1109/4.792617

    Article  Google Scholar 

  41. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design Perspective. Prentice Hall (2003)

    Google Scholar 

  42. Stolk, P.A., Widdershoven, F.P., Klaassen, D.B.M.: Modeling statistical dopant fluctuations in MOS transistors. IEEE Transactions on Electron Devices 45(9), 1960–1971 (1998). DOI 10.1109/16.711362

    Article  Google Scholar 

  43. Narendra, S.G.: Effect of MOSFET threshold voltage variation on high-performance circuits. Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science (2002)

    Google Scholar 

  44. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. In: Proceedings of the IEEE, pp. 305–327 (2003)

    Google Scholar 

  45. Veendrick, J.M.H.: Nanometer CMOS ICs: From basics to ASICs, 1st Edn. Springer, Heidelberg (2008)

    Book  Google Scholar 

  46. Srivastava, A., Blaauw, D., Sylvester, D.: Statistical Analysis and Optimization for VLSI: Timing and Power. Springer Science+Business Media Inc, Boston, MA (2005). DOI 10.1007/b137645

    Google Scholar 

  47. Chan, T.Y., Chen, J., Ko, P.K., Hu, C.: The impact of gate-induced drain leakage current on mosfet scaling. In: Proc. Int. Electron Devices Meeting, vol. 33, pp. 718–721 (1987). DOI 10.1109/IEDM.1987.191531

    Google Scholar 

  48. Bouhdada, A., Bakkali, S., Touhami, A.: Modelling of gate-induced drain leakage in relation to technological parameters and temperature. Microelectronics and Reliability 37(4), 649–652 (1997). DOI 10.1016/S0026-2714(96)00062-5

    Article  Google Scholar 

  49. Mulaik, S.A.: Foundations of factor analysis, 2nd Edn. Chapman & Hall/CRC statistics in the social and behavioral sciences series. CRC Press, Boca Raton, FL (2010)

    MATH  Google Scholar 

  50. Johnson, R.A., Wichern, D.W.: Applied multivariate statistical analysis, 6th Edn. Pearson Prentice Hall, Upper Saddle River N.J. (2007)

    Google Scholar 

  51. Weisstein, E.W.: Regularized gamma function. http://mathworld.wolfram.com/RegularizedGammaFunction.html. From MathWorld – A Wolfram Web Resource

  52. Rencher, A.C.: Methods of multivariate analysis (2002). DOI 10.1002/0471271357

    Google Scholar 

  53. Johnson, N., Kotz, S.: Distribution in Statistics I. Continuous univarite distributions. Wiley (1970)

    Google Scholar 

  54. Karian, Z.A., Dudewicz, E.J.: Fitting statistical distributions: The Generalized Lambda Distribution and Generalized Bootstrap methods. CRC Press, Boca Raton (2000)

    Book  MATH  Google Scholar 

  55. Shlens, J.: Tutorial on Principal Component Analysis. Tech. Rep. Version 2, Systems Neurobiology Laboratory, Salk Insitute for Biological Studies and Institute for Nonlinear Science, University of California, San Diego (2005). CiteSeerX 10.1.1.115.3503

    Google Scholar 

  56. Jolliffe, I.T.: Principal Component Analysis, 2nd Edn. Springer (2002)

    Google Scholar 

  57. Jackson, J.E.: A User’s Guide to Principal Components. Wiley Series in Probability and Statistics. Wiley (2003)

    Google Scholar 

  58. Skillicorn, D.B.: Understanding complex datasets: Data mining with matrix decompositions. Chapman & Hall/CRC data mining and knowledge discovery series. Chapman & Hall/CRC Press, Boca Raton (2007)

    Book  MATH  Google Scholar 

  59. Kalman, D.: A singulary valuable decomposition : The SVD of a matrix. The College Mathematical Journal 27(1), 1–23 (1996). URL http://www1.math.american.edu/People/kalman/pdffiles/svd.pdf

  60. Shamsi, D., Boufounos, P., Koushanfar, F.: Noninvasive leakage power tomography of integrated circuits by compressive sensing. In: ISLPED ’08: Proceedings of the 2003 international symposium on Low power electronics and design, pp. 341–346. ACM, NY, USA, Bangalore (2008)

    Google Scholar 

  61. Box, G.E.P., Draper, N.R.: Empirical model-building and response surfaces. Wiley series in probability and mathematical statistics. Wiley, New York (1987)

    MATH  Google Scholar 

  62. Poggio, T.: On optimal nonlinear associative recall. Biol. Cybernetics 19, 201–209 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lauridsen, S., Vitali, R., van Keulen, F., Haftka, R.T., Madsen, J.: Response surface approximation using gradient information. In: World Congress of Structural and Multidisciplinary Optimization WCSMO-4. Dalian, China (2001). CiteSeerX 10.1.1.16.2135 URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.2135

  64. Park, S., H.J., K., Cho, J.I.: Recent advances in linear models and related areas. In: Optimal Central Composite Designs for Fitting Second Order Response Surface Linear Regression Models, pp. 323–339. Physica-Verlag HD (2008). DOI 10.1007/978-3-7908-2064-5_17

    Google Scholar 

  65. Cheng, L., Xiong, J., He, L.: Non-Gaussian statistical timing analysis using second-order polynomial fitting. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 28(1), 130–140 (2009). DOI 10.1109/TCAD.2008.2009143

    Article  Google Scholar 

  66. Sohrmann, C., Muche, L., Haase, J.: Accurate approximation to the probability of critical performance. In: 2. GMM/GI/ITG-Fachtagung Zuverlässigkeit und Entwurf, pp. 93–97 (2008)

    Google Scholar 

  67. Zhang, M., Olbrich, M., Seider, D., Frerichs, M., Kinzelbach, H., Barke, E.: CMCal: An accurate analytical approach for the analysis of process variations with non-Gaussian parameters and nonlinear functions. In: Design, Automation & Test in Europe Conference & Exhibition, 2007. DATE ’07, pp. 1–6 (2007). DOI 10.1109/DATE.2007.364598

    Google Scholar 

  68. Saucier, R.: Computer generation of statistical distributions. Tech. rep., Army Research Laboratory (2000). URL http://ftp.arl.mil/random/

  69. Cheng, R.C.: Boostrap methods in computer simulation experiments. In: Proceedings of the 1995 Winter Simulation Conference, pp. 171–177 (1995)

    Google Scholar 

  70. Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer Publishing Company, Incorporated (2008)

    MATH  Google Scholar 

  71. Rao, R., Srivastava, A., Blaauw, D., Sylvester, D.: Statistical estimation of leakage current considering inter- and intra-die process variation. In: Proceedings of the 2003 International Symposium on Low Power Electronics and Design ISLPED ’03, pp. 84–89 (2003), DOI 10.1109/LPE.2003.1231840

    Google Scholar 

  72. Denny, M.: Introduction to importance sampling in rare-event simulations. EUROPEAN JOURNAL OF PHYSICS 22(4), 403–411 (2001)

    Article  Google Scholar 

  73. Robert, C.P., Casella, G.: Monte Carlo statistical methods, 2nd Edn. Springer texts in statistics. Springer, New York, NY (2004). ISBN 978-0-387-21239-5

    MATH  Google Scholar 

  74. Hesterberg, T.: Advances in importance sampling. Statistics Department, Stanford University (1998)

    Google Scholar 

  75. Hein, A.: Parameter- und Quantilschätzung in der Extremwerttheorie. Uni Kaiserslautern (2001)

    Google Scholar 

  76. Reiss, R., M., T.: Statistical Analysis of Extreme Values. Birkhäuser (2007)

    Google Scholar 

  77. de Haan, L., Ferreira, A.: Extreme value theory. An Introduction. Springer series in operations research and financial engineering. Springer (2000)

    Google Scholar 

  78. Li, X., Le, J., Pileggi, L.T.: Projection-based statistical analysis of full-chip leakage power with non-log-normal distributions. In: Proc. DAC 2006, pp. 103–108 (2006)

    Google Scholar 

  79. GSA & IET International Semiconductor Forum, London UK, 18-19 May 2010 “Better Analog Modeling and Integration with iPDKs”

    Google Scholar 

  80. Hu, C.: Future CMOS scaling and reliability. Proceedings of the IEEE, 81(5) (1993)

    Google Scholar 

  81. Wong, B.P., Mittal, A., Cao, Y., Starr, G.: NANO-CMOS Circuit and physical design, John Wiley & Sons, New York (2005)

    Google Scholar 

  82. Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327–396 (2006) Institute physics publishing

    Google Scholar 

  83. Ge precursors for strained Si and compound semiconductors, semiconductor international, (2006)

    Google Scholar 

  84. Risch, L.: Pushing CMOS beyond the roadmap, Proceedings of ESSCIRC, p. 63 (2005)

    Google Scholar 

  85. Subramanian, V.: Multiple gate field-effect transistors for future CMOS technologies. IETE Technical review 27, 446–454 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Lemaitre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lemaitre, B., Sohrmann, C., Muche, L., Haase, J. (2012). Physical and Mathematical Fundamentals. In: Dietrich, M., Haase, J. (eds) Process Variations and Probabilistic Integrated Circuit Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6621-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6621-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6620-9

  • Online ISBN: 978-1-4419-6621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics