Skip to main content

Role of 4-1BBL and TRAF1 in the CD8 T Cell Response to Influenza Virus and HIV

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 691))

Abstract

4-1BB is an inducible member of the TNFR family found on antigen-activated T cells as well as on cells of the innate immune system. 4-1BB is a late-acting survival factor for effector T cells, sustaining CD8 T cell survival in the lung during severe respiratory infection with influenza virus. With milder influenza infections, 4-1BBL is dispensable for initial CD8 T cell responses. However, 4-1BB on the CD8 T cells and 4-1BBL primarily on radioresistant cells are important in maintaining CD8 T cell memory to influenza virus. 4-1BB is induced on memory but not naive CD8 T cells independently of antigen, by common gamma chain cytokines such as IL-15 and IL-2. This allows memory CD8 T cells to respond to 4-1BBL in the absence of antigen. 4-1BB transduces signals via recruitment of TRAF1 and TRAF2. Earlier work had shown that TRAF2 was essential for 4-1BB signaling in T cells, whereas the role of TRAF1 was unclear. Our recent studies have demonstrated the importance of TRAF1 in the survival of activated and memory CD8 T cells. We also showed that 4-1BB and TRAF1 are important in the costimulation-dependent rescue of functional CD8 T cells from a starting population of non-functional HIV-specific T cells isolated from chronically infected individuals. Downstream of 4-1BB, TRAF1 maintains the stability of TRAF2 and allows ERK-dependent depletion of the proapoptotic molecule BIM, resulting in increased CD8 T survival. Recently several reports have identified linkages between autoimmunity and single nucleotide polymorphisms in the TRAF1/C5 region. Further work is required to determine whether specific polymorphisms in TRAF1 could influence the ability of different individuals to respond to infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bertram EM, Dawicki W, Watts TH (2004) Role of T cell costimulation in anti-viral immunity. Sem Immunol 16:185–196

    Article  CAS  Google Scholar 

  2. Sabbagh L, Snell LM, Watts TH (2007) TNF family ligands define niches for T cell memory. Trends Immunol 28:333–339

    Article  CAS  PubMed  Google Scholar 

  3. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Ann Rev Immunol 23:23–68

    Article  CAS  Google Scholar 

  4. Lynch DH (2008) The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 222:277–286

    Article  CAS  PubMed  Google Scholar 

  5. Melero I, Murillo O, Dubrot J, Hervas-Stubbs S, Perez-Gracia JL (2008) Multi-layered action mechanisms of CD137 (4-1BB)-targeted immunotherapies. Trends Pharmacol Sci 29:383–390

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Lin GH, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215

    Article  CAS  PubMed  Google Scholar 

  7. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, DeBenedette MA, Mak TW, Choi Y, Watts TH (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862

    Article  CAS  PubMed  Google Scholar 

  8. Jang IK, Lee ZH, Kim YJ, Kim SH, Kwon BS (1998) Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-kappa B. Bioch Biophys Res Comm 242:613–620

    Article  CAS  Google Scholar 

  9. Arch RH, Thompson CB (1998) 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol Cell Biol 18:558–565

    CAS  PubMed  Google Scholar 

  10. Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165:6193–6204

    CAS  PubMed  Google Scholar 

  11. Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692

    Article  CAS  PubMed  Google Scholar 

  12. Carpentier I, Beyaert R (1999) TRAF1 is a TNF inducible regulator of NF-kappaB activation. FEBS Lett 460:246–250

    Article  CAS  PubMed  Google Scholar 

  13. Tsitsikov EN, Laouini D, Dunn IF, Sannikova TY, Davidson L, Alt FW, Geha RS (2001) TRAF1 is a negative regulator of TNF signaling: enhanced TNF signaling in TRAF1-deficient mice. Immunity 15:647–657

    Article  CAS  PubMed  Google Scholar 

  14. Speiser DE, Lee SY, Wong B, Arron J, Santana A, Kong YY, Ohashi PS, Choi Y (1997) A regulatory role for TRAF1 in antigen-induced apoptosis of T cells. J Exp Med 185:1777–1783

    Article  CAS  PubMed  Google Scholar 

  15. Jameson SC, Carbone FR, Bevan MJ (1993) Clone-specific T cell receptor antagonists of major histocompatibility complex class I-restricted cytotoxic T cells. J Exp Med 177:1541–1550

    Article  CAS  PubMed  Google Scholar 

  16. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson T C, Ledbetter JA, Aruffo A, Mittler RS (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  CAS  PubMed  Google Scholar 

  17. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med 3:682–685

    Article  CAS  PubMed  Google Scholar 

  18. Topham DJ, Castrucci MR, Wingo FS, Belz GT, Doherty PC (2001) The role of antigen in the localization of naive, acutely activated, and memory CD8(+) T cells to the lung during influenza pneumonia. J Immunol 167:6983–6990

    CAS  PubMed  Google Scholar 

  19. Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH (2008) ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol 180:8093–8101

    CAS  PubMed  Google Scholar 

  20. Sabbagh L, Srokowski CC, Pulle G, Snell LM, Sedgmen BJ, Liu Y, Tsitsikov EN, Watts TH (2006) A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival. Proc Natl Acad Sci U S A 103:18703–18708

    Article  CAS  PubMed  Google Scholar 

  21. Bukczynski J, Wen T, Ellefsen K, Gauldie J, Watts TH (2004) Costimulatory ligand 4-1BBL (CD137L) as an efficient adjuvant for human antiviral cytotoxic T cell responses. Proc Natl Acad Sci U S A 101:1291–1296

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH (2007) 4-1BBL Induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T Cells. J Immunol 179:8252–8263

    CAS  PubMed  Google Scholar 

  23. Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, Yagita H, Okumura K (1998) CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 273:13353–13358

    Article  CAS  PubMed  Google Scholar 

  24. Shin H, Wherry EJ (2007) CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol 19:408–415

    Article  CAS  PubMed  Google Scholar 

  25. Trimble LA, Lieberman J (1998) Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex. Blood 91:585–594

    CAS  PubMed  Google Scholar 

  26. Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, King A, Ogg GS, Spiegel HM, Conlon C, Spina CA, Havlir DV, Richman DD, Waters A, Easterbrook P, McMichael AJ, Rowland-Jones SL (2000) HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75

    Article  CAS  PubMed  Google Scholar 

  27. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, Van Baarle D, Kostense S, Miedema F, McLaughlin M, Ehler L, Metcalf J, Liu S, Connors M (2002) HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3:1061–1068

    Article  CAS  PubMed  Google Scholar 

  28. Pantaleo G, Harari A (2006) Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat Rev Immunol 6:417–423

    Article  CAS  PubMed  Google Scholar 

  29. Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10:806–810

    Article  CAS  PubMed  Google Scholar 

  30. Bukczynski J, Wen T, Wang C, Christie N, Routy JP, Boulassel MR, Kovacs CM, Macdonald KS, Ostrowski M, Sekaly RP, Bernard NF, Watts TH (2005) Enhancement of HIV-specific CD8 T cell responses by dual costimulation with CD80 and CD137L. J Immunol 175:6378–6389

    CAS  PubMed  Google Scholar 

  31. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, Liew A, Khalili H, Chandrasekaran A, Davies LR, Li W, Tan AK, Bonnard C, Ong RT, Thalamuthu A, Pettersson S, Liu C, Tian C, Chen WV, Carulli JP, Beckman EM, Altshuler D, Alfredsson L, Criswell LA, Amos CI, Seldin MF, Kastner DL, Klareskog L, Gregersen PK (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis--a genomewide study. N Engl J Med 357:1199–1209

    Article  CAS  PubMed  Google Scholar 

  32. Kurreeman FA, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, Stoeken-Rijsbergen G, van der Helm-van Mil AH, Allaart CF, Verduyn W, Houwing-Duistermaat J, Alfredsson L, Begovich AB, Klareskog L, Huizinga TW, Toes RE (2007) A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med 4:e278

    Article  PubMed  Google Scholar 

  33. Albers HM, Kurreeman FA, Houwing-Duistermaat JJ, Brinkman DM, Kamphuis SS, Girschick HJ, Wouters C, Van Rossum MA, Verduijn W, Toes RE, Huizinga TW, Schilham MW, ten Cate R (2008) The TRAF1/C5 region is a risk factor for polyarthritis in juvenile idiopathic arthritis. Ann Rheum Dis 67:1578–1580

    Article  CAS  PubMed  Google Scholar 

  34. Behrens EM, Finkel TH, Bradfield JP, Kim CE, Linton L, Casalunovo T, Frackelton EC, Santa E, Otieno FG, Glessner JT, Chiavacci RM, Grant SF, Hakonarson H (2008) Association of the TRAF1-C5 locus on chromosome 9 with juvenile idiopathic arthritis. Arthritis Rheum 58:2206–2207

    Article  PubMed  Google Scholar 

  35. Kurreeman FA, Goulielmos GN, Alizadeh BZ, Rueda B, Houwing-Duistermaat J, Sanchez E, Bevova M, Radstake TR, Vonk MC, Galanakis E, Ortego N, Verduyn W, Zervou MI, Consortium S, Roep BO, Dema B, Espino L, Urcelay E, Boumpas DT, van den Berg LH, Wijmenga C, Koeleman BP, Huizinga TW, Toes RE, Martin J (2010) The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69:696–699

    Google Scholar 

  36. Panoulas VF, Smith JP, Nightingale P, Kitas GD (2009) Association of the TRAF1/C5 locus with increased mortality, particularly from malignancy or sepsis, in patients with rheumatoid arthritis. Arthritis Rheum 60:39–46

    Article  CAS  PubMed  Google Scholar 

  37. Zervou MI, Sidiropoulos P, Petraki E, Vazgiourakis V, Krasoudaki E, Raptopoulou A, Kritikos H, Choustoulaki E, Boumpas DT, Goulielmos GN (2008) Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum Immunol 69:567–571

    Article  CAS  PubMed  Google Scholar 

  38. Bertram EM, Lau P, Watts TH (2002) Temporal segregation of CD28 versus 4-1BBL-mediated costimulation: 4-1BBL influences T cell numbers late in the primary response and regulates the size of the memory response following influenza infection. J Immunol 168:3777–3785

    CAS  PubMed  Google Scholar 

  39. Pulle G, Vidric M, Watts TH (2006) IL-15-dependent induction of 4-1BB promotes Ag-independent CD8 memory T cell survival. J Immunol 176:2739–2748

    CAS  PubMed  Google Scholar 

  40. Lin GH, Sedgmen BJ, Moraes TJ, Snell LM, Topham DJ, Watts TH (2009) Endogenous 4-1BB ligand plays a critical role in protection from influenza-induced disease. J Immunol 182:934–947

    CAS  PubMed  Google Scholar 

  41. Bertram EM, Dawicki W, Sedgmen B, Bramson JL, Lynch DH, Watts TH (2004) A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172:981–988

    CAS  PubMed  Google Scholar 

  42. Zhu Y, Zhu G, Luo L, Flies AS, Chen L (2007) CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood 109:4882–4889

    Article  CAS  PubMed  Google Scholar 

  43. Becker TC, Coley SM, Wherry EJ, Ahmed R (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273

    CAS  PubMed  Google Scholar 

  44. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A (2004) Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 200:825–834

    Article  CAS  PubMed  Google Scholar 

  45. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3:269–279

    Article  CAS  PubMed  Google Scholar 

  46. Zapata JM, Krajewska M, Krajewski S, Kitada S, Welsh K, Monks A, McCloskey N, Gordon J, Kipps TJ, Gascoyne RD, Shabaik A, Reed JC (2000) TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 165:5084–5096

    CAS  PubMed  Google Scholar 

  47. Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, Archer D, Spencer T, Dillehay D, Kwon B, Chen L, Vella AT, Mittler RS (2007) Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J Immunol 178:4194–4213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for our research is provided by the Canadian Institutes of Health Research (CIHR) and the Canadian Cancer Society. G.H.Y. Lin is funded by a CIHR studentship; L.M. Snell is funded by the Fonds de la recherche en santé Quebec; C. Wang is funded by an Ontario HIV treatment network studentship; and L. Sabbagh, by a fellowship from the Leukemia and Lymphoma Society of America. T.H.W. holds the sanofi pasteur chair in Human Immunology at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania H. Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Watts, T.H., Lin, G.H., Wang, C., McPherson, A.J., Snell, L.M., Sabbagh, L. (2011). Role of 4-1BBL and TRAF1 in the CD8 T Cell Response to Influenza Virus and HIV. In: Wallach, D., Kovalenko, A., Feldmann, M. (eds) Advances in TNF Family Research. Advances in Experimental Medicine and Biology, vol 691. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6612-4_19

Download citation

Publish with us

Policies and ethics