Skip to main content

Cardiac Rhythm Management IC’s

  • Chapter
  • First Online:
Bio-Medical CMOS ICs

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Cardiac rhythm management devices can be grouped into two broad categories: pacemakers and implantable cardioverter defibrillators (ICD’s). These devices, over the last decades, have continued to grow in capability and complexity, and provide therapy for a wide range of cardiac rhythm disorders. The devices themselves are only one important part of the entire system, which includes device, leads, programmer, and the patient. This chapter will provide some background about the need for these devices, their function in the system, and details on their internal electrical design, focusing on the integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmqvist R, Senning A (1960) An implantable pacemaker for the heart. In: Smythe CN (ed) Medical Electronics, Proceedings of the Second International Conference on Medical Electronics, Paris, 1959, Tliffe and Sons, London

    Google Scholar 

  2. Geddes LA (1990) Historical highlights in cardiac pacing. IEEE Eng Med Biol 9:12–18

    Article  Google Scholar 

  3. Parsonnet V, Zucker IR, Asa MM (1962) Preliminary investigation of the development of a permanent implantable pacemaker using an intracardiac dipolar electrode. Clin Res, 10:391

    Google Scholar 

  4. Kenny T (2006) The nuts and bolts of ICD therapy. Blackwell, Malden MA

    Book  Google Scholar 

  5. International Standards Organization (2000) Implants for surgery—cardiac pacemakers—Part 3: Low-profile connectors (IS-1) for implantable pacemakers ISO 5841–3:2000

    Google Scholar 

  6. Kenny T (2005) The nuts and bolts of cardiac pacing. Blackwell, Malden MA

    Book  Google Scholar 

  7. Mallela VS, Ilankumaran V, Rao NS (2004) Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J 4(4):201–212

    Google Scholar 

  8. Jeffrey K, Parsonnet V (1998) Cardiac pacing, 1960–1985: A quarter century of medical and industrial innovation. Circulation 97:1978–1991

    Google Scholar 

  9. Parsonnet V, et al. (1973) A permanent pacemaker capable of external non-invasive programming. Trans Am Soc Artif Intern Organs 19:224–228

    Google Scholar 

  10. Bernstein AD, Daubert JC, Fletcher RD, et al. (2000) The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate and multisite pacing. Pacing Clinic Electrophysiol 25:260–264

    Article  Google Scholar 

  11. Huffman FN, Migliore JJ, Robinson, WJ, Norman, JC (1974) Radioisotope powered cardiac pacemakers. IEEE Trans Nucl Sci NS21(1):707–713

    Article  Google Scholar 

  12. Greatbatch W, et al. (1971) The solid-state lithium battery: A new improved chemical power source for implantable cardiac pacemakers. IEEE Trans. Biomed Eng. 18:317–324

    Article  Google Scholar 

  13. Takeuchi ES, Quattrini PJ, Greatbatch W (1988) Lithium/silver vanadium oxide batteries for implantable defibrillators. Pacing Clinic Electrophysiol 11(11):2035–2039

    Article  Google Scholar 

  14. Bunch TJ, Hayes DL, Friendman PA, (2008) Clinically relevant basics of pacing and defibrillation. In: Hayes DL, Friedman PA (eds) Cardiac pacing, defibrillation and resynchronization, 2nd edn. Wiley-Blackwell, West Sussex U.K

    Google Scholar 

  15. Daliri M, Maymandi-Nejad M (2008) A 0.8 V 420 nW CMOS switched-opamp switched-capacitor pacemaker front-end with a new continuous-time CMFB. Int Conf Electron Circuits Syst, ICECS 2008, Aug 31–Sept 3, pp. 758–761

    Google Scholar 

  16. Silveira F, Flandre D (2004) Low power analog CMOS for cardiac pacemakers. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  17. Gerosa A, Maniero A, Neviani A (2004) A fully integrated dual-channel log-domain programmable preamplifier and filter for an implantable cardiac pacemaker. IEEE Trans Circuits Syst 15(10):1916–1925

    Google Scholar 

  18. Wong LSY et al. (2004) A very low-power CMOS mixed-signal IC for implantable pacemaker applications. IEEE J Solid-State Circuits 39(12):2446–2456

    Article  Google Scholar 

  19. Gerosa A, Neviani A (2005) A 1.8 μW sigma-delta modulator for 8-bit digitization of cardiac signals in implantable pacemakers operating down to 1.8 V. IEEE Trans Circuits Syst II:Express Briefs 52(2):71–76

    Article  Google Scholar 

  20. Ryan JG, Carroll KJ, Pless BD (1989) A four chip implantable defibrillator/pacemaker chipset. IEEE 1989 Custom Integrated Circuits Conference

    Google Scholar 

  21. Walden RH (1999) Analog-to-digital converter survey and analysis. IEEE J Selected Areas Commun 17(4):539–550

    Article  Google Scholar 

  22. Murmann B (2008) A/D converter trends: power dissipation, scaling and digitally assisted architectures. IEEE 2008 Custom Integrated Circuits Conf 105–112

    Google Scholar 

  23. Scott MD, Boser BE, Pister KSJ (2003) An ultralow-energy ADC for smart dust. IEEE J Solid-State Circuits 38(7):1123–1129

    Article  Google Scholar 

  24. Nys OJAP, Dijkstra E (1993) On configurable oversampled A/D converters. IEEE J Solid-State Circuits 28(7):736–742

    Article  Google Scholar 

  25. Gulati K, Lee HS (2001) A low-power reconfigurable analog-to-digital converter. IEEE J Solid State Circuits 36(12): 1900–1911

    Article  Google Scholar 

  26. Markus J, Silva J, Temes GC (2004) Theory and applications of incremental delta sigma converters. IEEE Trans Circuits Syst 51(4):678–690

    Article  Google Scholar 

  27. Swaroop P, Vasani AJ, Ghovanloo M (2006) A high-voltage output driver for implantable biomedical stimulators and I/O applications. MWSCAS ’06, 49th IEEE Int Midwest Symp Circuits Systems (1):566–569

    Google Scholar 

  28. Hayes DL, Wang PJ, Asirvatham SJ, Friedman PA, (2008) Pacemaker and cardiac resynchronization timing cycles and electrocardiography. In: Hayes DL, Friedman PA (eds) Cardiac pacing, defibrillation and resynchronization, 2nd edn. Wiley-Blackwell, West Sussex U.K

    Chapter  Google Scholar 

  29. FCC rules and regulations (1999) MICS Band plan. Part 95, 47 CFR 95.601-95.673 Subpart E

    Google Scholar 

  30. Savci HS, Sula A, Wang Z, Dogan NS, Arvas E (2005) MICS transceivers: regulatory standards and applications. IEEE Southeast Con 179–182

    Google Scholar 

  31. Bradley PD (2006) An ultra low power, high performance medical implant communication system (MICS) transceiver for implantable devices. IEEE Biomed Circuits Syst Conf 158–161

    Google Scholar 

  32. Roy K, et al. (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE, 91(2):305–327

    Article  Google Scholar 

  33. Vittoz EA (2006) Origins of weak inversion (or sub-threshold) circuit design. In: Wang A, et al. (eds) Sub-threshold design for ultra low-power systems. Springer, New York

    Google Scholar 

  34. Vittoz EA, Fellrath J (1977) CMOS analog integrated circuits based on weak inversion operation. IEEE J Solid-State Circuits 12(3):224–231

    Article  Google Scholar 

  35. Wang A, et al. (eds) (2006) Sub-threshold design for ultra low-power systems. Springer, New York

    Google Scholar 

  36. Soudris D, Piguet C, Goutis C (eds) (2002) Designing CMOS circuits for low power. Kluwer, Boston MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erno Klaassen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Klaassen, E. (2011). Cardiac Rhythm Management IC’s. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics