Skip to main content

Historical Overview and General Methods of Membrane Potential Imaging

  • Chapter
  • First Online:
Membrane Potential Imaging in the Nervous System

Abstract

Voltage imaging was first conceived in the late 1960s and efforts to find better organic voltage-sensitive dyes began in the 1970s and continue until today. At the beginning it was difficult to measure an action potential signal from a squid giant axon in a single trial. Now it is possible to measure the action potential in an individual spine. Other chapters will discuss advances in voltage imaging technology and applications in a variety of biological preparations. The development of genetically encoded voltage sensors has started. A genetically encoded sensor could provide cell type specific expression and voltage recording.

Optimizing the signal-to-noise ratio of a voltage-sensitive dye recording requires attention to several aspects of the recording apparatus. These include the light source, the optics, and the recording device. All three have improved substantially in recent years. Arc lamp and laser sources are now stable, more powerful, and less expensive. Cameras for recording activity have frame rates above 1 kHz and quantum efficiencies near 1.0 although they remain expensive. The sources of noise in optical recordings are well understood. Both the apparatus and the noise sources are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashley CC, Ridgway EB (1970) On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J Physiol 209:105–130.

    PubMed  CAS  Google Scholar 

  • Baker B, Kosmidis E, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D (2005) Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 25:245–282.

    Article  PubMed  CAS  Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Boyle MB, Cohen LB (1980) Birefringence signals that monitor membrane potential in cell bodies of molluscan neurons. Fed Proc 39:2130.

    Google Scholar 

  • Braddick HJJ (1960) Photoelectric photometry. Rep Prog Phys 23:154–175.

    Article  CAS  Google Scholar 

  • Brown JE, Cohen LB, De Weer P, Pinto LH, Ross WN, Salzberg BM (1975) Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J 15:1155–1160.

    Article  PubMed  CAS  Google Scholar 

  • Bucher H, Wiegand J, Snavely BB, Beck KH, Kuhn H (1969) Electric field induced changes in the optical absorption of a merocyanine dye. Chem Phys Lett 3:508–511.

    Article  Google Scholar 

  • Bullen A, Patel SS, Saggau P (1997) High-speed, random-access fluorescence microscopy: I. High resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys J 73:477–491.

    Article  PubMed  CAS  Google Scholar 

  • Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol 83:35–88.

    PubMed  CAS  Google Scholar 

  • Cohen LB, Keynes RD, Hille B (1968) Light scattering and birefringence changes during nerve activity. Nature 218:438–441.

    Article  PubMed  CAS  Google Scholar 

  • Cohen LB, Salzberg BM et al (1974) Changes in axon fluorescence during activity: molecular probes of membrane potential. J Membr Biol 19:1–36.

    Article  PubMed  CAS  Google Scholar 

  • Conti F (1975) Fluorescent probes in nerve membranes. Annu Rev Biophys Bioeng 4:287–310.

    Article  PubMed  CAS  Google Scholar 

  • Conti F, Tasaki I, Wanke E (1971) Fluorescence signals in ANS-stained squid axons during voltage clamp. Biophys J 8:58–70.

    CAS  Google Scholar 

  • Davila HV, Cohen LB, Salzberg BM, Shrivastav BB (1974) Changes in ANS and TNS fluorescence in giant axons from Loligo. J Membr Biol 15:29–46.

    Article  PubMed  CAS  Google Scholar 

  • Fromherz P, Dambacher KH et al (1991) Fluorescent dyes as probes of voltage transients in neuron membranes: progress report. Ber Bunsenges Phys Chem 95:1333–1345.

    Article  CAS  Google Scholar 

  • Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453:385–396.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364.

    Article  PubMed  CAS  Google Scholar 

  • Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurements of the membrane dipole potential. Biophys J 67:208–216.

    Article  PubMed  CAS  Google Scholar 

  • Gupta RK, Salzberg BM, Grinvald A, Cohen LB, Kamino K, Lesher S, Boyle MB, Waggoner AS, Wang CH (1981) Improvements in optical methods for measuring rapid changes in membrane potential. J Membr Biol 58:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Hill DK (1950) The effect of stimulation on the opacitiy of a crustacean nerve trunk and its relation to fibre diameter. J Physiol 111:283–303.

    PubMed  CAS  Google Scholar 

  • Hill DK, Keynes RD (1949) Opacity changes in stimulated nerve. J Physiol 108:278–281.

    Google Scholar 

  • Hirota A, Sato K, Momose-Sato Y, Sakai T, Kamino K (1995) A new simultaneous 1020-site optical recording system for monitoring neural activity using voltage-sensitive dyes. J Neurosci Meth 56:187–194.

    Article  CAS  Google Scholar 

  • Inoue S (1986) Video microscopy. Plenum Press, New York.

    Google Scholar 

  • Jobsis FF, O’Connor MJ (1966) Calcium release and reabsorption in the sartorius muscle of the toad. Biochem Biophys Res Commum 25:246–252.

    Article  CAS  Google Scholar 

  • Kleinfeld D, Delaney KR (1996) Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes. J Comp Neurol 375:89–108.

    Article  PubMed  CAS  Google Scholar 

  • Labhart H (1963) Bestimmung von moleküleigenschaften aus elektrooptischen effekten. Tetrahedron 19(Suppl 2):223–241.

    Article  CAS  Google Scholar 

  • Levin SV, Rosenthal DL, Komissarchik YY (1968) Structural changes in the axon membrane on excitation. Biofizika 13:180–182.

    Google Scholar 

  • Loew LM, Cohen LB, Salzberg BM, Obaid AL, Bezanilla F (1985) Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J 47:71–77.

    Article  PubMed  CAS  Google Scholar 

  • London JA, Zecevic D, Cohen LB (1987) Simultaneous optical recording of activity from many neurons during feeding in Navanax. J Neurosci 7:649–661.

    PubMed  CAS  Google Scholar 

  • Malmstadt HV, Enke CG, Crouch SR, Harlick G (1974) Electronic measurements for scientists. Benjamin, Menlo Park.

    Google Scholar 

  • Maylie J, Irving M, Sizto NL, Boyarsky G, Chandler WK (1987) Calcium signals recorded from cut frog twitch fibers containing tetramethylmurexide. J Gen Physiol 89:145–176.

    Article  PubMed  CAS  Google Scholar 

  • Nasonov DN, Suzdal’skaia IP (1957) Changes in the cytoplasm of myelinated nerve fibers during excitation. Fiziol Zh SSSR 43:664–672.

    PubMed  CAS  Google Scholar 

  • Orbach HS, Cohen LB (1983) Optical monitoring of activity from many areas of the in vitro and in vivo salamander olfactory bulb: a new method for studying functional organization in the vertebrate central nervous system. J Neurosci 3:2251–2262.

    PubMed  CAS  Google Scholar 

  • Orbach HS, Cohen LB, Grinvald A (1985) Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci 5:1886–1895.

    PubMed  CAS  Google Scholar 

  • Ross WN, Salzberg BM, Cohen LB, Davila HV (1974) A large change in dye absorption during the action potential. Biophys 14:983–986.

    Article  PubMed  CAS  Google Scholar 

  • Ross WN, Salzberg BM et al (1977) Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J Membr Biol 3:141–183.

    Google Scholar 

  • Salzberg BM, Bezanilla F (1983) An optical determination of the series resistance in Loligo. J Gen Physiol 82:807–817.

    Article  PubMed  CAS  Google Scholar 

  • Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN (1977) Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J Neurophysiol 40:1281–1291.

    PubMed  CAS  Google Scholar 

  • Schuette WH, Whitehouse WC, Lewis DV, O’Connor M, VanBuren JM (1974) A television fluorimeter for monitoring oxidative metabolism in intact tissue. Med Instrum 8:331–333.

    PubMed  CAS  Google Scholar 

  • Shaw R (1979) Photographic detectors. Appl Opt Optical Eng 7:121–154.

    Article  CAS  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165.

    Article  PubMed  CAS  Google Scholar 

  • Tank D, Ahmed Z (1985) Multiple-site monitoring of activity in cultured neurons. Biophys J 47:476A.

    Google Scholar 

  • Tasaki I, Watanabe A, Sandlin R, Carnay L (1968) Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A 61:883–888.

    Article  PubMed  CAS  Google Scholar 

  • Tsien RY (1989) Fluorescent probes of cell signaling. Annu Rev Neurosci 12:227–253.

    Article  PubMed  CAS  Google Scholar 

  • Vereninov AA, Nikolsky NN, Rosenthal DL (1962) Neutral red sorption by the giant axon of Sepia at excitation. Tsitologiya 4:666–668.

    Google Scholar 

  • Wachowiak M, Cohen LB (2003) Correspondence between odorant-evoked patterns of receptor neuron input and intrinsic optical signals in the mouse olfactory bulb. J Neurophysiol 89:1623–1639.

    Article  PubMed  Google Scholar 

  • Waggoner AS, Grinvald A (1977) Mechanisms of rapid optical changes of potential sensitive dyes. Ann NY Acad Sci 303:217–241.

    PubMed  CAS  Google Scholar 

  • Wu JY, Cohen LB (1993) Fast multisite optical measurement of membrane potential. In Fluorescent and Luminescent Probes for Biological Activity., WT Mason ed., Academic Press, London 389–404.

    Google Scholar 

Download references

Acknowledgments

The author is indebted to his collaborators Vicencio Davila, Amiram Grinvald, Kohtaro Kamino, Ying-wan Lam, Leslie Loew, Bill Ross, Brian Salzberg, Alan Waggoner, Matt Wachowiak, Jian-young Wu, and Michal Zochowski for numerous discussions about optical methods. The experiments carried out in my laboratory were supported by NIH grants.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cohen, L.B. (2010). Historical Overview and General Methods of Membrane Potential Imaging. In: Canepari, M., Zecevic, D. (eds) Membrane Potential Imaging in the Nervous System. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6558-5_1

Download citation

Publish with us

Policies and ethics