Skip to main content

Chemical Sensors

  • Chapter
  • First Online:

Abstract

Sensors for measuring and detecting chemical substances are pervasively employed yet are, for the most part, unobtrusive. They are used to help run our cars more efficiently, track down criminals, and monitor our environment and health. Examples of uses include monitoring of oxygen in automobile exhaust systems, glucose levels in samples from diabetics, and carbon dioxide in the environment. In the laboratory, chemical detectors are the heart of key pieces of analytical equipment employed in the development of new chemicals and drugs and to monitor industrial processes. Progress has been impressive, and the literature is full of interesting developments. Recent developments include a broad spectrum of technologies, including improved screening systems for security applications [1] and miniaturization of systems once only used in laboratories [2]. Chemical sensors respond to stimuli produced by various chemicals or chemical reactions. These sensors are intended for identification and quantification of chemical species (including both liquid and gaseous phases).

This chapter is written in collaboration with Prof. Todd E. Mlsna (Mississippi State University,tmlsna@chemistry.msstate.edu) and Dr. Sanjay V. Patel (Seacoast Science, Inc., sanjay@seacoastscience.com).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Resistive temperature sensor having negative temperature coefficient (NTC) – see Chap. 16.

  2. 2.

    Vernier Mini Gas Chromatograph (www.vernier.com/probes/gc-mini.html).

  3. 3.

    An electrometer is an instrument for measuring very small electric charges, currents, or electrical potential differences. It is characterized by very low leakage currents, down to 1 fA.

  4. 4.

    The electron volt (eV) is a unit of energy. By definition, it is equal to the amount of kinetic energy gained by a single unbound electron when it accelerates through an electrostatic potential difference of 1 V. One eV is equal to 1.60217653 × 10−19 J.

  5. 5.

    See the subsection Thermal Sensors above.

  6. 6.

    U.S. National Institute of Standards and Technology. www.nist.gov

References

  1. Jacoby M (2009) Keepers of the gate. Chem Engng News 87(22):10–13

    Article  Google Scholar 

  2. Zheng O, Noll RJ, Cooks RG (2009) Handheld miniature ion trap mass spectrometers. Anal Chem 81(7):2421–2425

    Article  Google Scholar 

  3. Nagle HT, Gutierrez-Osuna R, Schiffman SS (1998) The how and why of electronic noses. IEEE Spectrum 35:22–34

    Article  Google Scholar 

  4. Amoore JE, Johnston JW, Rubin M (1964) The stereochemical theory of odor. Sci Am 210:42–99

    Article  Google Scholar 

  5. Ho CK, Hughes RC (2002) In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater. Sensors 2:23–34

    Article  Google Scholar 

  6. Kim T (2009) Canary in the old growth. High Country News, Paonia, Colorado, February 16

    Google Scholar 

  7. For a wealth of information on Mine Safety Gas Monitoring Equipment is the United States Department of Labor. Mine Safety & Health Administration (MSHA) website: http://www.msha.gov

  8. Clutton-Brock J (1995) In: Serpell J (ed) The domestic dog, its evolution, behaviour and interactions with people, Cambridge University Press, Cambridge, pp 7–20

    Google Scholar 

  9. Madou MJ, Morrison SR (1989) Chemical sensing with solid state devices, Academic Press, New York

    Google Scholar 

  10. Wolfrum EJ, Meglen RM, Peterson D, Sluiter J (2006) Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens Actuators B 115:322–329

    Article  Google Scholar 

  11. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299:352–355

    Article  ADS  Google Scholar 

  12. Sberveglieri G, Kluwer (ed) (1992) Gas sensors: principles, operations, and developments, Academic Publishers, Boston, MA, pp 8, 148, 282, 346–408

    Google Scholar 

  13. Blum LJ (1997) Bio- and chemi-luminescent sensors, World Scientific, River Edge, NJ, pp 6–32

    Book  Google Scholar 

  14. Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuators B 23:103–109

    Article  Google Scholar 

  15. Demarne V, Sanjinés R (1992) Thin film semiconducting metal oxide gas sensors. In: G. Sberveglieri (ed) Gas sensors, Kluwer Academic, Dordrecht, Netherlands, pp 89–116

    Chapter  Google Scholar 

  16. Malyshev VV, Vasiliev AA, Eryshkin AV, Koltypin EA, Shubin YI, Buturlin AI, Zaikin VA, Chakhunashvili GB (1992) Gas sensitivity of SnO2 and ZnO thin-film resistive sensors to hydrocarbons, carbon monoxide, and hydrogen. Sens Actuators B 10:11–14

    Article  Google Scholar 

  17. Hoefer U, Kühner G, Schweizer W, Sulz G, Steiner K (1994) CO and CO2 thin-film SnO2 gas sensors on Si substrates. Sens Actuators B 22:115–119

    Article  Google Scholar 

  18. Demarne V, Grisel A (1998) An integrated low-power thin-film CO gas sensors on silicon. Sensors and Actuators B 13:301–313

    Article  Google Scholar 

  19. Barsan N, Tomescu A (1995) The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4, and CO. Sens Actuators B 26–27:45–48

    Google Scholar 

  20. Van Geloven P, Moons J, Honore M, Roggen J (1989) Tin (IV) oxide gas sensors: thick-film versus metallo-organic based sensors. Sens Actuators B 17:361–368

    Article  Google Scholar 

  21. Schierbaum KD, Geiger J, Weimar U, Göpel W (1993) Specific palladium and platinum doping for SnO2-based thin film sensor arrays. Sens Actuators B 13–14:143–147

    Google Scholar 

  22. Sulz G, Kuhner G, Reiter H, Uptmoor G, Schweizer W, Low H, Lacher M, Steiner K (1993) Ni, In, and Sb implanted Pt and V catalyzed thin-film SnO2 gas sensors. Sens Actuators B 16:390–395

    Article  Google Scholar 

  23. Tournier G, Pijolat C, Lalauze R, Patissier B (1995) Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sens Actuators B 26–27:24–28

    Google Scholar 

  24. Huck R, Böttger U, Kolh D, Heiland G (1993) Spillover effects in the detection of H2 and CH4 by sputtered SnO2 films with Pd and PdO deposits. Sens Actuators B 17:355–359

    Google Scholar 

  25. Saji K, Takahashi H, Kondo H, Takeuchi, Igarashi I (1983) Characteristics of TiO2 oxygen sensor in nonequilibrium gas mixtures. In: Seiyama T, Fueki K, Shiokawa J, Suzuki S (eds) Chemical sensors, proceedings of the international meeting on chemical sensors, Fukuoka Japan, Elsevier, Tokyo, pp 171–176

    Google Scholar 

  26. Mumuera G, Gonzalez-Ellpe AR, Munoz A, Fernandez A, Soria J, Conesa J, Sanz J (1989) Mechanism of hydrogen gas-sensing at low temperatures using Rh/TiO2 Systems. Sens Actuators B 18:337–348

    Article  Google Scholar 

  27. Egashira M, Kanehara N, Shimizu Y, Iwanaga H (1989) Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers. Sens Actuators B 18:349–360

    Article  Google Scholar 

  28. Gentry SJ (1988) Catalytic devices. In: Edmonds TE (ed) Chemical sensors. Chapman and Hall, New York

    Google Scholar 

  29. Cobbold RSC (1974) Transducers for biomedical measurements. Wiley, New York

    Google Scholar 

  30. www.askiitians.com/iit-jee-chemistry/physical-chemistry/Kohlrausch-law.aspx

  31. Tan TC, Liu CC (1991) Principles and fabrication materials of electrochemical sensors. Chemical sensor technology. 3, Kodansha Ltd

    Google Scholar 

  32. Clark LC (1956) Monitor and control of blood and tissue oxygen tension. Trans Am Soc Artif Internal Organs 2:41–46

    Google Scholar 

  33. Grate JW, Klusty M, Barger WR, Snow AW (1990) Role of selective sorption in chemiresistor sensors for organophosphorus detection. Anal Chem 62(18):1927–1934

    Article  Google Scholar 

  34. Ho CK, Hughes RC (2002) In-situ chemiresistor sensor package for real-time detection of volatile organic compounds in soil and groundwater, Sensors 2:23–34

    Article  Google Scholar 

  35. Hierlemann A, Lange D, Hagleitner C, Kerness N, Koll A, Brand O, Baltes H (2000) Application-specific sensor systems based on CMOS chemical microsensors. Sens Actuators B Chem 70:2–11

    Article  Google Scholar 

  36. Endres H-E, Hartinger R, Schwaiger M, Gmelch G, Roth M (1999) A capacitive CO2 sensor system with suppression of the humidity interference. Sens Actuators B Chem 57:83–87

    Article  Google Scholar 

  37. Patel SV, Mlsna TE, Fruhberger B, Klaassen E, Cemalovic S, Baselt DR (2003) Chemicapacitive microsensors for volatile organic compound detection. Sens Actuators B 96(3):541–553

    Article  Google Scholar 

  38. Fotis E (2002) A new ammonia detector based on thin film polymer technology. Sensors 19(5):73–75

    Google Scholar 

  39. Mlsna TE, Cemalovic S, Warburton M, Hobson ST, Mlsna DA, Patel SV (2006) Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sens Actuators B Chem 116(1–2):192–201

    Article  Google Scholar 

  40. The Multi-User MEMS Process (MUMPs) from MEMSCAP, Inc. (Durham, NC) is used to manufacture the these chemicapacitive sensor chips.

    Google Scholar 

  41. Britton CL, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors. Ultramicroscopy 82:17–21

    Article  Google Scholar 

  42. Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton CL, Patel SV, Mlsna TE, McCorkle D, Warmack Jr, B (2003) Design and performance of a microcantilever-based hydrogen sensor, Sens Actuators B Chem 88(2):120–131

    Article  Google Scholar 

  43. Polk BJ (2002) ChemFET arrays for chemical sensing microsystems, IEEE 732–735

    Google Scholar 

  44. Wróblewski W, Wojciechowski K, Dybko A, Brzózka Z, Egberink RJM, Snellink-Ruël BHM, Reinhoudt DN (2001) Durability of phosphate-selective CHEMFETs, Sens Actuators B: Chem 78(1–3):315–319

    Article  Google Scholar 

  45. Wilson DM, Hoyt S, Janata J, Booksh K, Obando L (2001) Chemical sensors for portable, handheld field instruments, IEEE Sensor J 1(4):256–274

    Article  Google Scholar 

  46. Janata J (1989) Principles of chemical sensors, Chapter 4. Plenum Press, New York

    Google Scholar 

  47. Kharitonov AB, Zayats M, Lichtenstien A, Katz E, Willner I (2000) Enzyme monolayer-functionalized field-effect transistors for biosensor applications. Sens Actuators B 70(1–3):222–231

    Article  Google Scholar 

  48. Ballantine DS, White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic wave sensors: theory, design and physicochemical applications, Academic Press, Boston, MA

    Google Scholar 

  49. Ristic VM (1983) Principles of acoustic devices. Wiley, New York

    Google Scholar 

  50. Nieuwenhuizen MS et al (1986) Transduction mechanism in SAW gas sensors. Electron Lett 22:184–185

    Article  Google Scholar 

  51. Wenzel SW, While RM (1989) Analytic comparison of the sensitivities of bulk-surface-, and flexural plate-mode ultrasonic gravimetric sensors. Appl Phys Lett 54:1976–1978

    Article  ADS  Google Scholar 

  52. Nieuwenhuizen MS et al (1986) Transduction mechanism in SAW gas sensors. Electron Lett 22:184–185

    Article  Google Scholar 

  53. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  54. Battiston FM, Ramseyer J-P, Lang HP, Baller MK, Gerber Ch, Gimzewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout, Sens Actuators B Chem 77:122–131

    Article  Google Scholar 

  55. Baselt DR, Fruhberger B, Klaassen E, Cemalovic S, Britton Jr, CL, Patel SV, Mlsna TE, McCorkle D, Warmack B (2003) Design and performance of a microcantilever-based hydrogen sensor. Sens Actuators B 88(2):120–131

    Article  Google Scholar 

  56. Hansen KM, Ji, H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73:1567–1571

    Article  Google Scholar 

  57. Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (2001) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13:731–739

    Article  Google Scholar 

  58. Betts TA, Tipple CA, Sepaniak MJ, Datskos PG (2000) Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films. Anal Chim Acta 422:89–99

    Article  Google Scholar 

  59. Senesac LR, Yi D, Greve A, Hales JH, Davis ZJ, Nicholson DM, Boisen A, Thundat T. (2009) Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102

    Article  ADS  Google Scholar 

  60. Thundat T, Wachter EA, Sharp SL, Warmack RJ (1995) Detection of mercury-vapor using resonating microcantilevers. Appl Phys Lett 66(13):1695–1697

    Article  ADS  Google Scholar 

  61. Thundat T, Chen GY, Warmack RJ, Allison DP, Wachter EA (1995) Vapor detection using resonating microcantilevers. Anal Chem 67(3):519–521

    Article  Google Scholar 

  62. Pinnaduwage LA, Wig A, Hedden DL, Gehl A, Yi D, Thundat T, Lareau RT (2004) Detection of trinitrotoluene via deflagration on a microcantilever, J Appl Phys 95:5871–5875

    Article  ADS  Google Scholar 

  63. Datskos PG, Oden PI, Thundat T, Wachter EA, Warmack RJ, Hunter SR (1996) Remote infrared radiation detection using piezoresistive microcantilevers, Appl Phys Lett 69(20):2986–2988

    Article  ADS  Google Scholar 

  64. Creaser C, Thomas P et al. (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. The Analyst 129:984–994

    Article  ADS  Google Scholar 

  65. Ching W, William FS, Herbert HH Jr (2000) Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. Anal Chem 72(2):396–403

    Article  Google Scholar 

  66. Maggie T, Herbert HH Jr (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem 76(10):2741–2747

    Article  Google Scholar 

  67. Rhykerd CL, Hannum DW, Murray DW, Parmeter JE (1999) Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications, NIJ Guide 100–99, NCJ 178913, September 1999, available at: www.ojp.usdoj.gov/nij/pubs-sum/178913.htm

  68. Dewa AS, Ko WH (1994) Biosensors. In: Sze SM (ed) Semiconductor sensors, Wiley, New York, pp 415–472

    Google Scholar 

  69. Gentry SJ (1988) Catalytic devices. In: Edmonds TE (ed) Chemical sensors, Chapman and Hall, New York

    Google Scholar 

  70. RAE Systems Inc., Theory and Operation of NDIR Sensors, Technical Note TN-169. rev 1 wh.04-02

    Google Scholar 

  71. Dybko A, Wroblewski W (2000) Fiber optic chemical sensors, www.ch.pw.edu.pl/∼dybko/csrg/fiber/operating.html

  72. Seiler K, Simon W (1992) Principles and mechanisms of ion-selective optodes. Sensors Actuators B 6:295–298

    Article  Google Scholar 

  73. Walt DR (2000) Molecular biology: bead based fiber-optic arrays. Science 287(5452):451

    Article  Google Scholar 

  74. Dewa AS, Ko WH (1994) Biosensors. In: Sze SM (ed) Semiconductor sensors, Wiley, Inc. New York, pp 415–472

    Google Scholar 

  75. Gottuk DT, Hill SA, Schemel CF, Strehlen BD, Rose-Pehrsson SL, Shaffer RE, Tatem PA, Williams FW (1999) Identification of Fire Signatures for Shipboard Multi-criteria Fire Detection Systems. NRL/MR/6180-99-8386, Naval Research Laboratory, Washington, DC, pp 48–87

    Google Scholar 

  76. Einax JW, Zwanziger HW, Geib S (1997) Chemometrics in environmental analysis. VCH, Weinheim, Germany, pp 2–75

    Book  Google Scholar 

  77. Prasad L, Iyengar SS, Rao RL, Kashyap RL (1994) Fault-tolerant sensor integration using multiresolution decomposition. Phys Rev E 49(4):3452–3461

    Article  ADS  Google Scholar 

  78. Cometto-Muñiz JE, Cain WS (1990) Thresholds for odor and nasal pungency. Physiol Behav 48:719–725

    Article  Google Scholar 

  79. Wang P, Liu Q, Xua Y, Cai H, Li Y (2007) Olfactory and taste cell sensor and its applications in biomedicine. Sens Actuators A 139:131–138

    Article  Google Scholar 

  80. Nagle HT, Schiffman SS, Gutierrez-Osuna R (1998) The how and why of electronic noses, IEEE Spectrum 35:22–34

    Article  Google Scholar 

  81. Raman B, Meier DC, Evju JK, Semancik S (2009) Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens Actuators B 137:617–629

    Article  Google Scholar 

  82. Raman B, Hertz JL, Benkstein KD, Semancik S (2008) Bioinspired methodology for artificial olfaction. Anal Chem 80:8364

    Article  Google Scholar 

  83. Meier DC, Raman B, Semancik S (2009) Detecting chemical hazards with temperature-programmed microsensors: overcoming complex analytical problems with multidimensional databases. Annu Rev Anal Chem 2:463–84

    Article  Google Scholar 

  84. Edmonds TE (ed) (1988) Chemical sensors, Blackie and Son Ltd, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Fraden .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fraden, J. (2010). Chemical Sensors. In: Handbook of Modern Sensors. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6466-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6466-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6465-6

  • Online ISBN: 978-1-4419-6466-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics