Skip to main content

Poly(ADP-Ribosyl)ation of Chromosomal Proteins, Epigenetic Regulation and Human Genomic Integrity in Health and Disease

  • Chapter
  • First Online:

Part of the book series: Protein Reviews ((PRON,volume 13))

Abstract

The reproducible and accurate expression of genetic information and the integrity of the human genome, both temporally and topographically, rely heavily on the biochemical ability of nuclear proteins to physically interact with each other, as well as with DNA and RNA, at the molecular level. The strength and specificity of these interactions is primarily determined by the intracellular concentrations of each molecule present. Whereas, the affinity is dictated by the collective primary, secondary, tertiary and quaternary structures of the polypeptides themselves, notwithstanding the intrinsic physicochemical and structural properties of the different types of nucleic acids involved. For the most part, the interactions of DNA with protein molecules occur spontaneously in chromatin because the appropriately folded structures of nuclear proteins are adopted prior to their nucleoplasmic internalization via active and passive transport mechanisms. Once transported into the cell nucleus, most proteins whether, structural in nature, like the histones localized within highly compacted interphase chromatin, or as functional enzymes that modulate chromatin dynamics, such as DNA and RNA polymerases (the catalysts responsible for DNA replication, DNA repair, and transcription) are frequently regulated by unique epigenetic mechanisms of amino acid specific covalent chemical modification, e.g., phosphorylation, acetylation, SUMOylation, nitrosylation, and poly(ADP-ribosyl)ation, just to list a few. Interestingly, while most of these biochemical pathways may be ubiquitous to the cytosolic and plasma membrane compartments, the modification of chromatin proteins via ADP-ribose polymerization, especially when catalyzed by poly(ADP-ribose) polymerases 1 and 2 (PARP-1 and PARP-2), exclusively localizes within the nucleoplasm. Emphasis is placed here to review the current state of the latter, particularly as it pertains to the balance between human health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Althaus, F.R. (1992). Poly ADP-ribosylation: a histone shuttle mechanism in DNA excision repair. J. Cell Sci. 102:663–670.

    PubMed  CAS  Google Scholar 

  • Alvarez-Gonzalez, R., Juarez-Salinas, H., Jacobson, E.L., et al. (1983). Evaluation of immobilized boronates for studies of adenine and pyridine nucleotide metabolism. Anal. Biochem. 135:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Gonzalez, R., and Jacobson, M.K. (1987). Characterization of polymers of adenosine diphosphate ribose generated in Vitro and in Vivo. Biochemistry 26:3218–3224.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Gonzalez, R. (1988). 3′-deoxyNAD as a substrate for poly(ADP-ribose) polymerase and the reaction mechanism of poly(ADP-ribose) elongation. J. Biol. Chem. 263: 17690–17696.

    PubMed  CAS  Google Scholar 

  • Alvarez-Gonzalez, R. (ed) (1999). ADP-ribosylation reactions: from bacterial pathogenesis to cancer. Kluwer, Dordrecht/Boston/London.

    Google Scholar 

  • Alvarez-Gonzalez, R., Spring, H., Muller, M., et al. (1999). Selective loss of poly(ADP-ribose) and the 85 kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis in HeLa cells. J. Biol. Chem. 274:32122–32126.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Gonzalez, R. (2001). PARP-regulation of eukaryotic gene expression. Survival or Death? Trends Genet. 17:607–608.

    Article  CAS  Google Scholar 

  • Alvarez-Gonzalez, R. (2007). Genomic maintenance: the p53 poly(ADP-ribosyl)ation connection. Sci. STKE (415):pe68.

    Article  Google Scholar 

  • Atorino, L., Alvarez-Gonzalez, R., Cardone, A., et al. (2000). Metabolic changes in the poly(ADP-ribosyl)ation pathway of differentiating rat germinal cells. Arch. Biochem. Biophys. 381:111–118.

    Article  PubMed  CAS  Google Scholar 

  • Bartha, E., Kiss, G.N., Kalman, E., et al. (2008). Effect of L-2286, a poly(ADP-ribose) polymerase inhibitor and enalapril on myocardial remodeling and heart failure. J. Cardiovasc. Pharmacol. 52:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Beneke, S., and Burkle, A. (2007). Poly(ADP-ribosyl)ation in mammalian aging. Nucleic Acids Res. 35:7456–7465.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, R.C., and Gill, D.M. (1980). ADP-ribosylation in mammalian cell ghosts. Dependence of poly(ADP-ribose) synthesis on strand breakage on DNA. J. Biol. Chem. 255:10493–10501.

    PubMed  CAS  Google Scholar 

  • Beard, W.A., and Wilson, S.H. (2006). Structure and mechanism of DNA polymerase beta. Chem. Rev. 106:361–382.

    Article  PubMed  CAS  Google Scholar 

  • Booz, G.W. (2007). PARP inhibitors and heart failure. Translational medicine caught in the act. Congestive Heart Fail. 13:105–112.

    Article  CAS  Google Scholar 

  • Bouchard, V.J., Rouleau, M., Poirier, G.G. (2003). PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol. 31:446–454.

    Article  PubMed  CAS  Google Scholar 

  • Bromme, H.J., and Holtz, J. (1996). Apoptosis in the heart: when and why. Mol. Cell. Biochem. 163–164:261–275.

    Article  PubMed  Google Scholar 

  • Chambon, P., Weill, J.D., Mandel, P. (1963). Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing enzyme. Biochem. Biophys. Res. Commun. 11:9–43.

    Article  Google Scholar 

  • Chang, W.J., and Alvarez-Gonzalez, R. (2001). The sequence specific DNA-binding of NF-κB is reversibly regulated by the automodification reaction of poly(ADP-ribose) polymerase-1. J. Biol. Chem. 276:47664–47670.

    Article  PubMed  CAS  Google Scholar 

  • Chatteerjee, S., Berger, S.J., Berger, N.A. (1999). Poly(ADP-ribose) polymerase: a guardian of the genome that facilitates DNA repair by protecting against DNA recombination. Mol. Cell. Biochem. 193:23–30.

    Article  Google Scholar 

  • Choi, D.W. (1997). At the scene of ischemic brain injury. Is PARP a perp. Nature (Med) 3:1073–1074.

    Article  CAS  Google Scholar 

  • Conde, C., Mark, M., Oliver, F.J., Huber, A., et al. (2001). Loss of poly(ADP-ribose) polymerase 1 causes increased tumor latency in p53 deficient mice. EMBO J. 20:3535–3543.

    Article  PubMed  CAS  Google Scholar 

  • Csiszar, A., Wang, M., Lakkata, E.G., et al. (2008). Inflammation and endothelial dysfunction during aging: role of NF-kappa B. J. Appl. Physiol. 105:1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • De Boer, R.A., van Veldhuisen, D.J., van der Wijk, J., et al. (2000). Additional use of immunostaining for active caspase 3 and cleaved actin and PARP fragments to detect apoptosis in patients with chronic heart failure. J. Card. Fail. 6:330–337.

    Article  PubMed  Google Scholar 

  • Donawho, C.K., Luo, Y., Penning, T.D., et al. (2007). ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in pre-clinical tumor models. Clin. Cancer Res. 13:2728–2737.

    Article  PubMed  CAS  Google Scholar 

  • El-Domyati, M.M., Al-Din, A.B., Barakat, M.T., et al. (2008). Deoxyribonucleic acid repair and apoptosis in testicular germ cells of aging fertile men: the role of the poly(adenosine diphosphate ribosyl)ation pathway. Fertil. Steril. 91(Suppl 5):2221–2229

    PubMed  Google Scholar 

  • Endres, M., Wang, Z.Q., Namura, S., et al. (1997). Ischemic brain injury is mediated by the activation by poly(ADP-ribose) polymerase. J. Cereb. Blood Flow Metab. 17:1143–1151.

    Article  PubMed  CAS  Google Scholar 

  • Gospodinov, A., and Herceg, Z. (2009). Chromatin. The entry and exit from DNA repair. In: Vidal, C.J. (ed) Post-translational Modifications of Proteins, Springer, New York.

    Google Scholar 

  • Grube, K., and Burkle, A. (1992). Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc. Natl. Acad. Sci. U.S.A. 89:11759–11763.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, M., Beray-Berthat, V., Coqueran, B., et al. (2008). Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose) polymerase inhibitor after permanent focal cerebral ischemia in mice. Eur. J. Pharmacol. 588:52–57.

    Article  PubMed  CAS  Google Scholar 

  • Hassa, P.O., Buerki, C., Lombardi, C., et al. (2003). Transcriptional co-activation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP-ribose) polymerase-1. J. Biol. Chem. 278:45145–45153.

    Article  PubMed  CAS  Google Scholar 

  • Izzo, A., Kamieniarz, K., Schneider, R. (2008). The histone H1 family: specific members, specific functions? Biol. Chem. 389:333–343.

    Article  PubMed  CAS  Google Scholar 

  • Jeoung, D., Lim, Y., Lee, E.B., et al. (2004). Identification of autoantibody against poly(ADP-ribose) polymerase (PARP) fragment as a serological marker in systemic lupus erythematosus. J. Autoimmunity 22: 87–94.

    Article  CAS  Google Scholar 

  • Joashi, U.C., Greenwood, K., Taylor, D.L., et al. (1999). Poly(ADP-ribose) polymerase cleavage precedes neuronal cell death in the hippocampus and cerebellum following injury to the development rat forebrain. Eur. J. Neurosci. 11:91–100.

    Article  PubMed  CAS  Google Scholar 

  • Juarez-Salinas, H., Sims, J.L., Jacobson, M.K. (1979). Poly(ADP-ribose) levels in carcinogen-treated cells. Nature (London) 282:740–741.

    Article  CAS  Google Scholar 

  • Kawaichi, K., Ueda, K., Hayaishi, O. (1981). Multiple autopoly(ADP-ribosyl)ation of rat liver poly(ADP-ribose) synthetase: Mode of modification and properties of automodified synthetase. J. Biol. Chem. 256:9483–9489.

    PubMed  CAS  Google Scholar 

  • Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128:693–705.

    Article  PubMed  CAS  Google Scholar 

  • Kumari, S.R., Alvarez-Gonzalez, R., Mendoza-Alvarez, H. (1998). Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA-damage: covalent poly(ADP-ribosyl)ation by exogenous PARP and non-covalent binding of p53 to Mr 85,000 proteolytic fragment. Cancer Res. 58:5075–5078.

    PubMed  CAS  Google Scholar 

  • Lane, D.P. (1992). Cancer. p53- Guardian of the genome. Nature (London) 358:15–16.

    Article  CAS  Google Scholar 

  • Lindall, A.W., and Lazarow, L. (1964). A critical study of pyridine nucleotide concentrations in normal fed, normal fasted and diabetic rat liver. Metabolism 13:259–271.

    Article  Google Scholar 

  • Loetscher, P., Alvarez-Gonzalez, R., Althaus, F.R. (1987). Poly(ADP-ribose) may signal changing metabolic conditions to the chromatin of mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 84: 1286–1289.

    Article  PubMed  CAS  Google Scholar 

  • Malecka, K.A., Ho, W.C., Marmorstein, R. (2009). Crystal structure of a p53 core tetramer bound to DNA. Oncogene 28:325–333.

    Article  PubMed  CAS  Google Scholar 

  • Masutani, M., Suzuki, H., Kamada, N., et al. (1999). Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptosotocyn-induced diabetes. Proc. Natl. Acad. Sci. U.S.A. 96:2301–2304.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (1993). Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J. Biol. Chem. 268:22575–22580.

    PubMed  CAS  Google Scholar 

  • Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (2001). Regulation of p53 sequence-specific binding by covalent poly(ADP-ribosyl)ation. J. Biol. Chem. 276:36425–36430.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (1999). Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase. Biochemistry 38:3948–3953.

    Article  PubMed  CAS  Google Scholar 

  • Messmer, U.K., Winkel, G., Briner, G.A., et al. (2000). Suppression of apoptosis by glucocorticoids in glomerulal endothelial cells: effects on proapoptotic pathways. Br. J. Pharmacol. 29:1673–1683.

    Article  Google Scholar 

  • Molnar. A., Toth, A., Bagi, Z., et al. (2006). Activation of the poly(ADP-ribose) polymerase pathway in human heart failure. Mol. Med. 12:143–152.

    Article  PubMed  CAS  Google Scholar 

  • Moroni, F., and Chiarugi, A. (2009). Post-ischemic brain damage: targeting PARP-1 within the ischemic neurovascular units as a realistic avenue to stroke treatment. FEBS J. 276:36–45.

    Article  PubMed  CAS  Google Scholar 

  • Negri, C., Scovassi, A.I., Cerino, A., et al. (1990). Autoantibodies to poly(ADP-ribose) polymerase in autoimmune diseases. Autoimmunity 6:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, F.J., Menissier-de Murcia, J., Nacci, C., et al. (1999). Resistance to endotoxic shock as a consequence to defective NF-κB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 18:4446–4454.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, H. (1999). The CD38-cyclic ADP-ribose signaling system in insulin secretion. Mol. Cell. Biochem. 193:115–118.

    Article  PubMed  CAS  Google Scholar 

  • Pacheco-Rodriguez, G., and Alvarez-Gonzalez, R. (1999). Measurement of poly(ADP-ribose) glycohydrolase activity by high resolution polyacrylamide gel electrophoresis: specific inhibition by histones and nuclear matrix proteins. Mol. Cell. Biochem. 193:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Pacher, P., and Szabo, C. (2008). Role of peroxynitrate-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173:1–13.

    Article  Google Scholar 

  • Perkin, N.D., and Gilmore, T.D. (2006). Good cop, bad cop: the different faces of NF-kappa B. Cell Death Differ. 13:759–772.

    Article  Google Scholar 

  • Pietsch, E.C., Sykes, S.M., MacMahon, S.B., et al. (2008). The p53 family and programmed cell death. Oncogene 27:6507–6521.

    Article  PubMed  CAS  Google Scholar 

  • Pillai, J.B., Isbatan, A., Imai, S.I., et al. (2005). Poly(ADP-ribose) polymerase 1-dependent cardiac myocyte cell death during heart failure is mediated by NAD + cell depletion and reduced Sir2α deacetylase activity. J. Biol. Chem. 280:43121–43130.

    Article  PubMed  CAS  Google Scholar 

  • Plummer, R., Jones, C., Middleton, M., et al. (2008). Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG-14699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer. Res. 14:7917–7923.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, A., and Casciola-Rosen, L. (2004). Altered autoantigen structure in Sjogren’s syndrome: implications for the pathogenesis of autoimmune tissue damage. Crit. Rev. Oral Biol. Med. 15:156–164.

    Article  PubMed  CAS  Google Scholar 

  • Scovassi, A.I., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation and apoptosis. Mol. Cell. Biochem. 199:125–137.

    Article  PubMed  CAS  Google Scholar 

  • Simbulan-Rosenthal, C.M., Rosenthal, D.S., Luo, R. B., et al. (2001). Poly(ADP-ribosyl)ation of p53 in vitro and in vivo modulates binding to its DNA consensus sequence. Neoplasia 3:179–188.

    Article  PubMed  CAS  Google Scholar 

  • Suganuma, T., and Workman, J.L. (2008). Crosstalk among histone modifications. Cell 135:604–607.

    Article  PubMed  CAS  Google Scholar 

  • Tong, W.M., Cortes, U., Wang, Z.Q. (2001). Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis. Biochim. Biophys. Acta 1552:27–37.

    PubMed  CAS  Google Scholar 

  • Tremethik, D.J. (2007). Higher-ordered structures of chromatin: the elusive 30 nm fiber. Cell 128:651–654.

    Article  Google Scholar 

  • Tye, B.K., and Swayer, S. (2000). The hexameric eukaryotic MCM helicase: building symmetry from non-identical parts. J. Biol. Chem. 275:34833–34836.

    Article  PubMed  CAS  Google Scholar 

  • Valdor, R., Schreiber, V., Saenz, J., et al. (2008). Regulation of NFAT by poly(ADP-ribose) polymerase in T cells. Mol. Immunol. 24:1863–1871.

    Article  Google Scholar 

  • Wieler, S., Cagne, J.P., Vaziri, H., et al. (2003). Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 cycle arrest response following ionizing radiation. J. Biol. Chem. 278:18914–18921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Alvarez-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alvarez-Gonzalez, R. (2011). Poly(ADP-Ribosyl)ation of Chromosomal Proteins, Epigenetic Regulation and Human Genomic Integrity in Health and Disease. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_17

Download citation

Publish with us

Policies and ethics