Skip to main content

The Force–Length Relationship of Mechanically Isolated Sarcomeres

  • Chapter
  • First Online:
Muscle Biophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

The sarcomere force–length relationship is arguably the most basic property of skeletal muscle force production. It has been accepted as textbook knowledge and is in direct support of the sliding filament and cross-bridge theories of contraction. However, the sarcomere force–length relationship has never been measured directly. Here, we show results of two experiments elucidating the force–length properties of mechanically isolated sarcomeres. We demonstrate that sarcomere forces are greatly dependent on sarcomere lengths for purely isometric conditions, but can take on essentially any steady-state value depending on an individual sarcomere’s contractile history. Therefore, we conclude that steady-state isometric forces in isolated sarcomeres do not only depend on sarcomere lengths (or equivalently actin-myosin overlap) but depend crucially on a sarcomere’s contractile history. These results have direct implications for our understanding of the molecular mechanisms of muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BC, Aubert XM (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    PubMed  CAS  Google Scholar 

  • Allinger TL, Herzog W, Epstein M (1996) Force–length properties in stable skeletal muscle fibers – theoretical considerations. J Biomech 29:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Bartoo ML, Popov VI, Fearn LA, Pollack GH (1993) Active tension generation in isolated skeletal myofibrils. J Muscle Res Cell Motil 14:498–510

    Article  PubMed  CAS  Google Scholar 

  • Bartoo ML, Linke WA, Pollack GH (1997) Basis of passive tension and stiffness in isolated rabbit myofibrils. Am J Physiol Cell Physiol 273:C266–C276

    CAS  Google Scholar 

  • Daniel TL, Trimble AC, Chase PB (1998) Compliant realignment of binding sites in muscle: transient behaviour and mechanical tuning. Biophys J 74:1611–1621

    Article  PubMed  CAS  Google Scholar 

  • Denoth J, Stussi E, Csucs G, Danuser G (2002) Single muscle fibre contraction is dictated by inter-sarcomere dynamics. J Theor Biol 216:101–122

    Article  PubMed  Google Scholar 

  • Edman KAP, Elzinga G, Noble MIM (1978) Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol 281:139–155

    PubMed  CAS  Google Scholar 

  • Edman KAP, Elzinga G, Noble MIM (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Herzog W, Leonard TR (1997) Depression of cat soleus forces following isokintic shortening. J Biomech 30(9):865–872

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Leonard TR (2002) Force enhancement following stretching of skeletal muscle: a new mechanism. J Exp Biol 205:1275–1283

    PubMed  CAS  Google Scholar 

  • Herzog W, Leonard TR (2006) Response to the (Morgan and Proske) letter to the editor by Walter Herzog (on behalf of the authors) and Tim Leonard. J Physiol 578.2:617–620

    Article  Google Scholar 

  • Herzog W, Kamal S, Clarke HD (1992) Myofilament lengths of cat skeletal muscle: theoretical considerations and functional implications. J Biomech 25:945–948

    Article  PubMed  CAS  Google Scholar 

  • Herzog W, Lee EJ, Rassier DE (2006) Residual force enhancement in skeletal muscle. J Physiol 574:635–642

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond 126:136–195

    Article  Google Scholar 

  • Hill AV (1953) The mechanics of active muscle. Proc R Soc Lond 141:104–117

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1366

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE, Hanson J (1954) Changes in cross-striations of muscle during contraction and stretch and their structural implications. Nature 173:973–976

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibres. Nature 173:971–973

    CAS  Google Scholar 

  • Huxley AF, Peachey LD (1961) The maximum length for contraction in vertebrate striated muscle. J Physiol 156:150–165

    PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Rassier DE, Leonard TR, Herzog W (2007) Passive force enhancement in single ­myofibrils. Pflügers Arch – Eur J Physiol 455:367–371

    Article  CAS  Google Scholar 

  • Joumaa V, Leonard TR, Herzog W (2008a) Residual force enhancement in myofibrils and sarcomeres. Proc R Soc B 275:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Rassier DE, Leonard TR, Herzog W (2008b) The origin of passive force enhancement in skeletal muscle. Am J Physiol Cell Physiol 294:C74–C78

    Article  PubMed  CAS  Google Scholar 

  • Labeit D, Watanabe K, Witt C et al. (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Lee HD, Herzog W (2002) Force enhancement following muscle stretch of electrically and ­voluntarily activated human adductor pollicis. J Physiol 545:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Herzog W (2008) Residual force enhancement exceeds the isometric force at optimal sarcomere length for optimized stretch conditions. J Appl Physiol 105:457–462

    Article  PubMed  Google Scholar 

  • Lee EJ, Herzog W (2009) Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states. J Biomech 42(14):2336–2340

    Article  PubMed  Google Scholar 

  • Leonard TR, Herzog W (2010) Regulation of muscle force in the absence of actin-myosin based cross-bridge interaction. Am J Physiol Cell Physiol [Epub ahead of print, doi:10.1152/ajpcell.00049.2010]

    Google Scholar 

  • Maréchal G, Plaghki L (1979) The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J Gen Physiol 73:453–467

    Article  PubMed  Google Scholar 

  • Morgan DL (1994) An explanation for residual increased tension in striated muscle after stretch during contraction. Exp Physiol 79:831–838

    PubMed  CAS  Google Scholar 

  • Morgan DL, Whitehead NP, Wise AK, Gregory JE, Proske U (2000) Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. J Physiol 522.3:503–513

    Article  PubMed  CAS  Google Scholar 

  • Rassier DE, Herzog W, Pollack GH (2003) Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc R Soc Lond B 270:1735–1740

    Article  Google Scholar 

  • Rayment I, Holden HM, Whittaker M et al. (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  PubMed  CAS  Google Scholar 

  • Rousanoglou EN, Oskouei AE, Herzog W (2007) Force depression following muscle shortening in sub-maximal voluntary contractions of human adductor pollicis. J Biomech 40:1–8

    Article  PubMed  Google Scholar 

  • Squire JM (1992) Muscle filament lattices and stretch-activation: the match-mismatch model ­reassessed. J Muscle Res Cell Motil 13:183–189

    Article  PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1988) Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol 407:215–229

    PubMed  CAS  Google Scholar 

  • Telley IA, Denoth J, Stussi E, Pfitzer G, Stehle R (2006a) Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 90:514–530

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Stehle R, Ranatunga KW, Pfitzer G, Stussi E, Denoth J (2006b) Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no ‘sarcomere popping’. J Physiol 573:173–185

    Article  PubMed  CAS  Google Scholar 

  • TR Leonard and W Herzog (2010) Regulation of muscle force in the absence of actin-myosin based cross-bridge interaction. Am.J Physiol Cell Physiol [Epub ahead of print, doi:10.1152/ajpcell.00049.2010]

    Google Scholar 

  • Walcott S, Herzog W (2008) Modeling residual force enhancement with generic cross-bridge models. Math Biosci 216:172–186

    Article  PubMed  Google Scholar 

  • Walker SM, Schrodt GR (1973) I segment lengths and thin filament periods in skeletal muscle fibers of the Rhesus monkey and the human. Anatomical Record 178:63–81

    Article  Google Scholar 

  • Zahalak GI (1997) Can muscle fibers be stable on the descending limbs of their sarcomere length-tension relations? J Biomech 30:1179–1182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Canadian Institutes of Health Research, The Canada Research Chair Program (for Molecular and Cellular Biomechanics), the Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Herzog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Herzog, W., Joumaa, V., Leonard, T.R. (2010). The Force–Length Relationship of Mechanically Isolated Sarcomeres. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_8

Download citation

Publish with us

Policies and ethics