Skip to main content

A Strain-Dependency of Myosin Off-Rate Must Be Sensitive to Frequency to Predict the B-Process of Sinusoidal Analysis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

Muscle force arises as the result of many myosin molecules, each producing a force discrete in magnitude and in time duration. In previous work we have developed a computer model and a mathematical model of many myosin molecules acting as an ensemble and demonstrated that the time duration over which myosin produces force at the molecular level (referred to here as “time-on”) gives rise to specific visco-elastic properties at the whole muscle level. That model of the mechanical consequences of myosin-actin interaction predicted well the C-process of small length perturbation analysis and demonstrated that the characteristic frequency 2πc provided a measure of the myosin off-rate, which is equal to the reciprocal of the mean time-on. In this study, we develop a mathematical hypothesis that a strain-dependence of the myosin off-rate at the single molecule level can result in a negative viscous modulus like that observed at low frequencies, i.e., the B-process. We demonstrate here that a simple monotonic strain-dependency of the myosin off-rate cannot account for the observed B-process. However, a frequency-dependent strain-dependency, as may occur when visco-elastic properties of the myosin head are introduced, can explain the observed negative viscous modulus. These findings suggest that visco-elastic properties of myosin constitute the specific molecular mechanisms that underlie the frequency-dependent performance of many oscillatory muscles such as insect flight muscle and mammalian cardiac muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott RH, Steiger GJ (1977) Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol 266:13–42

    PubMed  CAS  Google Scholar 

  • Baker JE, Brosseau C, Joel PB, Warshaw DM (2002) The biochemical kinetics underlying actin movement generated by one and many skeletal muscle myosin molecules. Biophys J 82:2134–2147

    Article  PubMed  CAS  Google Scholar 

  • Campbell KB, Chandra M, Kirkpatrick RD, Slinker BK, Hunter WC (2004) Interpreting cardiac muscle force-length dynamics using a novel functional model. Am J Physiol Heart Circ Physiol 286:H1535–H1545

    Article  PubMed  CAS  Google Scholar 

  • Cheung AS, Gray BF (1983) Muscle tension response to sinusoidal length perturbation: a theoretical study. J Muscle Res Cell Motil 4:615–623

    Article  PubMed  CAS  Google Scholar 

  • Davis JS, Rodgers ME (1995) Indirect coupling of phosphate release to de novo tension generation during muscle contraction. Proc Natl Acad Sci USA 92:10482–10486

    Article  PubMed  CAS  Google Scholar 

  • Debold EP, Schmitt JP, Patlak JB, Beck SE, Moore JR, Seidman JG, Seidman C, Warshaw DM (2007) Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. Am J Physiol Heart Circ Physiol 293:H284–H291

    Article  PubMed  CAS  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa NK, Palmer BM, Barnes WD, Leavitt BJ, Ittleman FP, Lewinter MM, Maughan DW (2005) Acto-myosin crossbridge kinetics in humans with coronary artery disease: influence of sex and diabetes mellitus. J Mol Cell Cardiol 39:743–753

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  PubMed  CAS  Google Scholar 

  • Harris DE, Warshaw DM (1993) Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem 268:14764–14768

    PubMed  CAS  Google Scholar 

  • Herron TJ, McDonald KS (2002) Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myo-cyte fragments. Circ Res 90:1150–1152

    Article  PubMed  CAS  Google Scholar 

  • Hibberd MG, Dantzig JA, Trentham DR, Goldman YE (1985) Phosphate re-lease and force ­generation in skeletal muscle fibers. Science 228:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Hill TL (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog Biophys Mol Biol 28:267–340

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Kad NM, Patlak JB, Fagnant PM, Trybus KM, Warshaw DM (2007) Mutation of a conserved glycine in the SH1-SH2 helix affects the load-dependent kinetics of myosin. Biophys J 92:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating ­biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1:279–303

    Article  PubMed  CAS  Google Scholar 

  • Machin KE (1964) Feedback theory and its application to biological systems. Symp Soc Exp Biol 18:421–445

    PubMed  CAS  Google Scholar 

  • Maughan D, Moore J, Vigoreaux J, Barnes B, Mulieri LA (1998) Work production and work absorption in muscle strips from vertebrate cardiac and insect flight muscle fibers. Adv Exp Med Biol 453:471–480

    Article  PubMed  CAS  Google Scholar 

  • Miller MS, Dambacher CM, Knowles AF, Braddock JM, Farman GP, Irving TC, Swank DM, Bernstein SI, Maughan DW (2009) Alternative S2 hinge regions of the myosin rod affect myofibrillar structure and myosin kinetics. Biophys J 96:4132–4143

    Article  PubMed  CAS  Google Scholar 

  • Palmer BM, Fishbaugher DE, Schmitt JP, Wang Y, Alpert NR, Seidman CE, Seidman JG, VanBuren P, Maughan DW (2004a) Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Am J Physiol Heart Circ Physiol 287:H91–H99

    Article  PubMed  CAS  Google Scholar 

  • Palmer BM, Noguchi T, Wang Y, Heim JR, Alpert NR, Burgon PG, Seidman CE, Seidman JG, Maughan DW, LeWinter MM (2004b) Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium. Circ Res 94:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Palmer BM, Suzuki T, Wang Y, Barnes WD, Miller MS, Maughan DW (2007) Two-state model of acto-myosin attachment-detachment predicts C-process of sinusoidal analysis. Biophys J 93:760–769

    Article  PubMed  CAS  Google Scholar 

  • Palmiter KA, Tyska MJ, Dupuis DE, Alpert NR, Warshaw DM (1999) Kinetic differences at the single molecule level account for the functional diversity of rabbit cardiac myosin isoforms. J Physiol 519:669–678

    Article  PubMed  CAS  Google Scholar 

  • Palmiter KA, Tyska MJ, Haeberle JR, Alpert NR, Fananapazir L, Warshaw DM (2000) R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil 21:609–620

    Article  PubMed  CAS  Google Scholar 

  • Pringle JW (1978) The Croonian Lecture, 1977. Stretch activation of muscle: function and ­mechanism. Proc R Soc Lond B Biol Sci 201:107–130

    Article  PubMed  CAS  Google Scholar 

  • Spudich JA (1994) How molecular motors work. Nature 372:515–518

    Article  PubMed  CAS  Google Scholar 

  • Steffen W, Sleep J (2004) Repriming the actomyosin crossbridge cycle. Proc Natl Acad Sci USA 101:12904–12909

    Article  PubMed  CAS  Google Scholar 

  • Steiger GJ (1977) Tension transients in extracted rabbit heart muscle preparations. J Mol Cell Cardiol 9:671–685

    Article  PubMed  CAS  Google Scholar 

  • Stein LA, Chock PB, Eisenberg E (1981) Mechanism of the actomyosin ATPase: effect of actin on the ATP hydrolysis step. Proc Natl Acad Sci USA 78:1346–1350

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Palmer BM, James J, Wang Y, Chen Z, Van Buren P, Maughan DW, Robbins J, LeWinter MM (2009) Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits. Circ Heart Fail 2(4):334–341

    Article  PubMed  CAS  Google Scholar 

  • Swank DM, Vishnudas VK, Maughan DW (2006) An exceptionally fast actomyosin reaction ­powers insect flight muscle. Proc Natl Acad Sci USA 103:17543–17547

    Article  PubMed  CAS  Google Scholar 

  • Thomas N, Thornhill RA (1995) A theory of tension fluctuations due to muscle cross-bridges. Proc Biol Sci 259:235–242

    Article  PubMed  CAS  Google Scholar 

  • Thorson J, White DC (1969) Distributed representations for actin-myosin interaction in the ­oscillatory contraction of muscle. Biophys J 9:360–390

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Warshaw DM (2002) The myosin power stroke. Cell Motil Cytoskeleton 51:1–15

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM (2000) Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res 86:737–744

    Article  PubMed  CAS  Google Scholar 

  • Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869

    Article  PubMed  CAS  Google Scholar 

  • White DC, Donaldson MM (1975) Mechanical and biochemical cycles in muscle contraction. Ciba Found Symp 341–353

    Google Scholar 

  • White DC, Thorson J (1972) Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J Gen Physiol 60:307–336

    Article  PubMed  CAS  Google Scholar 

  • Yamashita H, Tyska MJ, Warshaw DM, Lowey S, Trybus KM (2000) Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem 275:28045–28052

    PubMed  CAS  Google Scholar 

  • Zhao Y, Kawai M (1993) The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change. Biophys J 64:197–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated in honor of Dr. Mark R. Hilty. This work was supported by a grant from the NIH P01-HL59408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley M. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palmer, B.M. (2010). A Strain-Dependency of Myosin Off-Rate Must Be Sensitive to Frequency to Predict the B-Process of Sinusoidal Analysis. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_4

Download citation

Publish with us

Policies and ethics