Skip to main content

Battery-less Wireless Sensors Based on Low Power UHF RFID Tags

  • Chapter
  • First Online:

Abstract

A long range UHF RFID tag suitable for battery-less wireless sensors is implemented. The main theoretical limitations involving maximum communication distance between the tag and the reader are discussed obtaining useful system design guidelines. Using these guidelines an analog front-end is designed in a low cost 0.35µm CMOS process. The proposed analog front-end together with the EPC C1G2 compatible digital core allow the implementation of power management techniques, that together with the power optimized blocks such as voltage limiter, band-gap, regulators, clock generator and ASK demodulator provide a long reading range. The implemented voltage multiplier uses Schottky diodes to provide ef?ciencies higher than 35%. The measured UHF RFID analog front-end current consumption is 7.4µA. A complete wireless sensory system is implemented assembling the analog front-end chip to a matched dipole antenna, to an ultra-low power commercial sensor and to a module based digital core (?eld-programmable gate array - FPGA - and digital core replica power consumption module). Measured results show a successful wireless communication up to 2.4m from a 2W EIRP output power reader to a digital module plus low power sensor (temperature, pressure, humidity, etc.) with average power consumption lower than 37.5µW. Temperature and acceleration prototypes have been built showing communication ranges of 2m and 1m respectively using a commercial reader. These characteristics allow the use of the proposed sensory system in a battery-less wireless sensor network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. IDTechEx, “RFID Market Projections 2008 to 2018,” Technical Representative, January 2007.

    Google Scholar 

  2. “New Low-Cost Temperature Sensor,” RFID Journal, July 2002 [Online]. Available: http://www.rfidjournal.com/article/view/28/1/1.

  3. K. Opasjumruskit et al., “Self-powered wireless temperature sensors exploit RFID technology,” IEEE Pervasive Computing, vol. 5, no. 1, pp. 54–61, Jan.-Mar. 2006.

    Google Scholar 

  4. V.K. Chan and E. Mejia, Interrogation Device and Method for Scanning, US Patent#7,432,825, October 2008.

    Google Scholar 

  5. H. Shen, L. Li, Y. Zhou, “Fully integrated passive UHF RFID tag with temperature sensor for environment monitoring,” 7th International Conference on ASICON, pp. 360–363, October 2007.

    Google Scholar 

  6. N. Cho et al., “A 5.1-μW, UHF RFID tag chip integrated with sensors for wireless environmental monitoring,” ESSCIRC, pp. 279–282, 2005.

    Google Scholar 

  7. D. Yeager, F. Zhang, A. Zarrasvand and B. P Otis, “A 9. 2 μA Gen 2 Compatible UHF RFID Sensing Tag with -12dBm Sensitivity and 1. 25 μVrms Input- Referred Noise Floor,” IEEE International Solid-State Circuits Conference (ISSCC) - Digest of Technical Papers, pp. 24–26, February 2010.

    Google Scholar 

  8. EPCGlobal, EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID - Protocol for Communications at 860MHz - 960MHz. V1.2.0, October 2008.

    Google Scholar 

  9. ISO/IEC 18000-6 – Information technology – Radio frequency identification for item management – Part 6: Parameters for air interface communications at 860 MHz to 960 MHz International Organization for Standardization April, 2011.

    Google Scholar 

  10. G. De Vita and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” IEEE Transactions Microwave Theory and Techniques, vol. 53, no. 9, pp. 2985–2989, 2005.

    Google Scholar 

  11. J.F. Dickson, “On-chip high-voltage generation in NMOS integrated circuits using an im-proved voltage multiplier technique,” IEEE Journal Solid-State Circuits, vol. 11, no. 3, pp. 374–378, June 1976.

    Article  Google Scholar 

  12. U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16. 7 μm minimum RF input power,” IEEE Journal Solid-State Circuits, vol. 38, no. 10, pp. 1602–1608, October 2003.

    Google Scholar 

  13. A. Vaz et al., “Long range, low power UHF RFID analog front-end suitable for battery wireless sensors,” IEEE MTT-S International Microwave Symposium, 2010.

    Google Scholar 

  14. D. Pardo et al., “Design Criteria for Full Passive Long Range UHF RFID Sensor for Human Body Temperature Monitoring,” IEEE International Conference on RFID, 2007.

    Google Scholar 

  15. R. Barnett, G. Balachandran, S. Lazar, B. Kramer, G. Konnail, S. Rajasekhar and V. Drobny, “A passive UHF RFID transponder for EPC gen 2 with -14dBm sensitivity in 0.13 μm CMOS,” IEEE International Solid-State Circuits Conference (ISSCC) - Digest of Technical Papers, pp. 582–583, Feb. 2007.

    Google Scholar 

  16. A. Ricci, M. Grisanti, I. De Munari and P. Ciapolini, “Design of a 2 μW RFID Baseband Processor Featuring an AES Cryptography Primitive,” Proceedings of the 15th IEEE International Conference on Electronics Circuits and Systems (ICECS), pp. 376–379, 2008.

    Google Scholar 

  17. V. Roostaie, V. Najafi, S. Mohammadi and A. Fotowat-Ahmady, “A low power baseband processor for a dual mode UHF EPC Gen 2 RFID tag,” International Conference on Design and Technology of Integrated Systems in Nanoscale Era, 2008.

    Google Scholar 

  18. S. Wanggen, Z. Yiqi, L. Xiaoming, W. Xianghua, J. Zhao and W. Dan, “Design of an ultra-low-power digital processor for passive UHF RFID tags,” Journal of Semiconductors, vol. 30, no. 4, 2009 [Online]. Available: http://iopscience.iop.org/1674-4926/30/4/045004.

  19. P. Alanson, Sample et al., “Design of a passively-powered, programmable sensing platform for UHF RFID systems,” IEEE International Conference on RFID, 2007.

    Google Scholar 

  20. I. Zalbide, I. Vélez et al., “Power and energy optimization of the digital core of a GEN2 long range full passive RFID sensor tag,” IEEE International Conference on RFID, 2008.

    Google Scholar 

  21. D.J. Yeager, P.S. Powledge, R. Prasad, D. Wetherall and J.R. Smith, “Wirelessly-charged UHF tags for sensor data collection,” IEEE International Conference on RFID, pp. 320–327, 2008.

    Google Scholar 

  22. European Telecommunications Standards Institute (ETSI), EN 302 208: Electromagnetic compatibility and radio spectrum matters (ERM) Radio-frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W.

    Google Scholar 

Download references

Acknowledgments

This research work has been funded by CEIT, TECNUN, and FARSENS S.L., whose support is gratefully acknowledged. The authors would also like to thank the research teams from previous institutions for supporting this work. Special thanks to: Andrés García-Alonso, Juan Francisco Sevillano, Igone Vélez, Ainhoa Cortés, Daniel Pardo, Alexander Vaz, Aritz Ubarretxena, Héctor Solar, Iñigo Gutiérrez, Ainara Jiménez, Marcos Losada, Josean Gómez, and Iker Mayordomo for their many valuable discussions and support.

This research work has been sponsored by the Spanish Ministry of Education and Science with the Torres Quevedo Grants no. PTQ0803-08788 and no. PTQ0901-00527 and the project TEC2011-29148-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Rebollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berenguer, R., Rebollo, I., Zalbide, I., Fernández, I. (2013). Battery-less Wireless Sensors Based on Low Power UHF RFID Tags. In: Smith, J. (eds) Wirelessly Powered Sensor Networks and Computational RFID. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6166-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6166-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6165-5

  • Online ISBN: 978-1-4419-6166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics