Skip to main content

RNAi: A New Paradigm in Cancer Gene Therapy

  • Chapter
  • First Online:
Gene-Based Therapies for Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 869 Accesses

Abstract

RNA interference (RNAi) has revolutionized the field of gene therapy and opened up new opportunities for personalized treatments. However, several challenges remain for gene therapy. Therefore, new approaches for gene regulatory therapies are needed to overcome these challenges. In this chapter, we discuss the clinical significance of the RNAi machinery, clinical applications, delivery systems, off-target effects, imaging, and clinical trials. The remarkable advances in the design, delivery, and understanding of RNAi-based therapeutics predict a bright future for their development as therapeutic agents. It is well established that once a gene is identified as an important player in tumor progression or metastasis, siRNA is a feasible alternative to modulate its expression. Moreover, the development of new delivery systems will further advance the efficiency and localization of siRNA delivery to specific tissues and organs. Concurrently, the development of “intelligent probes” to identify siRNA function in addition to localization will further advance the evaluation of new formulations using imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinc A, Goldberg M, Qin J, et al (2009a) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17(5): 872–879.

    Article  PubMed  CAS  Google Scholar 

  • Akinc A, Zumbuelh A, Goldberg M, et al. (2009b) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5): 561–569.

    Article  Google Scholar 

  • Anderson E, Boese Q, Khvorova A, et al. (2008) Identifying siRNA-induced off targets by microarray analysis. Methods Mol Biol 442: 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DW, Davis ME. (2006) Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res 34(1): 322–333.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ, et al. (2007) Impact of tumor-specific targeting on the biodistribution and efficiency of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 104(39): 15549–15554.

    Article  PubMed  CAS  Google Scholar 

  • Chiosea S, Jelezcova E, Chandran U, et al. (2006) Up-regulation of dicer: a component of the MircoRNA machinery in prostate adenocarcinoma. Am J Pathol 169(5):1812–1820.

    Article  PubMed  CAS  Google Scholar 

  • Colombo R, Moll J (2008) Target validation and biomarker identification in oncology. Mol Diagn Ther 12(2): 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Crzelinski M, et al. (2006) RNA interference mediates RNA silencing of pleiotrophin through polyethylenimine complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts. Hum Gen Ther 17: 751–766.

    Article  Google Scholar 

  • Dass, CR. (2002) Vehicles for oligonucleotide delivery to tumors. J Pharm Pharmacol 54 (1): 593–627.

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zukerman JE, et al. (2010) Evidence of RNAi in humans from systemically administred siRNA via targeted nanoparticles, Nature 464(7291):1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Durcan N, Murphy C, Cryan S-A. (2008) Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm 5(4): 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi A, Dowdy SF. (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol Sci 30(7): 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi A, Maede BR, Chang Y-C, Fredrickson CT, et al. (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27(6): 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tushl T. (2001) Duplexes of 21-nucleotide RNA’s mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Sanguino A, Peng Z, et al. (2007) An anticancer C-kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest 117(12): 4044–4054.

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Garbuzenko OB, Saad M, Betigeri S, et al. (2009) Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res 26(2): 382–394.

    Article  PubMed  CAS  Google Scholar 

  • Gosselin MA, Lee RJ. (2002) Folate receptor-targeted liposomes as vectors for therapeutic agents. Biotechnol Annu Rev 8: 103–133.

    Article  PubMed  CAS  Google Scholar 

  • Gray MJ, VanBuren G, Dallas NA, et al. (2008) Therapeutic targeting of neuropilin-2 by siRNA reduces in vivo tumor progression in colorectal carcinoma cells in a murine orthotopic model. J Natl Cancer Inst 100: 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Guinn BA, Mulherkar R. (2008) International progress in cancer gene therapy. Cancer Gene Ther 15: 765–775.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Puente Y, Tari AM, Ford RJ, et al. (2003) Cellular pharmacology of P-ethoxy antisense oligonucleotides targeted to Bcl-2 in a follicular lymphoma cell line. Leuk Lymphoma 44: 1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Halder J, Kamat AA, Landen CN, et al. (2006) Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin Cancer Res 12(16): 4916–4924.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. (2000) The hallmarks of cancer. Cell 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hogrefe RI, Lebedev AV, Zon G, et al. (2006) Chemically modified short interfering hybrids (siHYBRIDS): nanoimmunoliposomes delivery in vitro and in vivo for RNAi of Her-2. Nucleosides Nucleotides Nucleic Acids 25(8): 889–907.

    Article  PubMed  CAS  Google Scholar 

  • Ho-Sze CY, Murnane JP, Ying Yeung AK, et al. (2008) Telomeres Acquire distinct heterochromatin characteristics during siRNA-Induced RNA interference in mouse cells. Curr Biol 18(3): 183–187.

    Article  Google Scholar 

  • Judge AD, Sood V, Shaw JR, et al. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457–462.

    Article  PubMed  CAS  Google Scholar 

  • Karagiannis ED, Anderson DG. (2009) Minicells overcome tumor drug-resistance. Nat Biotechnol 27(7): 620–621.

    Article  PubMed  CAS  Google Scholar 

  • Karube Y, Tanaka H, Osada H, et al. (2005) Reduced expression of dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96(2): 111–115.

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Rossi JJ. (2009) Overview of gene silencing by RNA interference. Curr Protoc Nucleic Acid Chem 16.1.1–16.1.10.

    Google Scholar 

  • Kleinman ME, Yamada K, Takeda A, et al. (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452(3): 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Landen CN, Chavez-Reyes A, Bucana C, et al. (2005) Therapeutic AphA2 gene targeting by in vivoliposomal siRNA delivery. Cancer Res 65(15): 6910–6918.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Shen Y. (2009) Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther 9(5): 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Fortin Y, Shen S-H. (2008) Forward and robust selection of the most potent and noncellular toxic siRNA from RNAi libraries. Nucleic Acids Res 37(1) doi:1-.1093/nar/gkn953.

    CAS  Google Scholar 

  • MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, et al. (2009) Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol 27(7): 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Mangala LS, Han HD, Lu C, et al. (2008) In vivo vascular and tumor cell gene silencing with chitosan nanoparticles in ovarian carcinoma. The 99th Annual Meeting of the American Association for Cancer Research, San Diego, CA.

    Google Scholar 

  • Matsumura Y, Oda T, Maeda H. (1987) General mechanism of intratumor accumulation of macromolecules: advantages of macromolecular therapeutics. Gan To Kagaku Ryoho 14: 821–829.

    PubMed  CAS  Google Scholar 

  • Medarova Z, Pham W, Farrar C, et al. (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3): 372–377.

    Article  PubMed  CAS  Google Scholar 

  • Merritt WM, Lin YG, Han LY, et al. (2008a) Dicer, drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25): 2641–2650.

    Article  PubMed  CAS  Google Scholar 

  • Merritt WM, Lin YG, Spannuth WA, et al. (2008b) Effects of IL-8 targeted therapy with liposome incorporated siRNA on ovarian cancer growth. J Natl Cancer Inst 100: 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Mikhaylova M, Stasinopoulos I, Kato Y, et al. (2009) Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther 16: 217–226.

    PubMed  CAS  Google Scholar 

  • Muralidhar B, Goldstein LD, Ng G, et al. (2007) Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 212: 368–377.

    Article  PubMed  CAS  Google Scholar 

  • NIHhttp://www.cancer.org/search/viewclinicaltrials.aspx?cdrid=595941&version=healthprofesionals

  • NIH http://www.cancer.org/search/viewclinicaltrials.aspx?cdrid=597982&version=healthprofesionals

  • Oh Y-K, Park TG. (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61: 850–862.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira Reis L, Campos Pereira T, Favaro WJ, et al (2009) Experimental animal model and RNA interference: a promising association for bladder cancer research. World J Urol 27: 353–361.

    Article  Google Scholar 

  • Paliser D, et al. (2006) An siRNA-based microbicide protects mice from lethal herpes simplex virus-2 infection. Nature 439: 89–94.

    Article  Google Scholar 

  • Pushparaj PN, Aarthi JJ, Manikandan J, et al.(2008) siRNA, miRNA, and shRNA: in vivo applications. J Dent Res 11: 992–1003.

    Google Scholar 

  • Rix U, Superti-Furga G. (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9): 616–624.

    Article  PubMed  CAS  Google Scholar 

  • Robbins M, Judge A, MacLachlan I. (2009) siRNA and innate immunity. Oligonucleotides 19(2): 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Sanguino A, Lopez-Berestein G, Sood AK (2008) Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem 8: 248–255.

    Article  PubMed  CAS  Google Scholar 

  • Sioud M. (2008) Does the understanding of immune activation by RNA predict the design of safe siRNA’s? Front Biosci 13: 4379–4392.

    Article  PubMed  CAS  Google Scholar 

  • So M-K, Gowrishankar G, Hasegawa S, et al. (2008) Imaging target mRNA and siRNA-mediated gene silencing in vivo with ribozyme-based reporters. Chembiochem 9: 2682–2691.

    Article  PubMed  CAS  Google Scholar 

  • Sugito N, Ishiguro H, Kuwabara Y, et al. (2006) RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 19(6): 454–458.

    Google Scholar 

  • Tschuch C, Schulz A, Pscherer A, et al. (2008) Off-target effects of siRNA specific for GFP. BMC Mol Biol 9: 60, doi: 10.1186/1471-2199-9-60.

    Article  PubMed  Google Scholar 

  • Van Mil A, Doevendans PA, Sluijter JPG. 2009 The potential of modulating small rna activity in vivo. Mini Rev Med Chem 9: 235–248.

    Article  PubMed  Google Scholar 

  • vanDongen S, Abreu-Goodger C, Enright AJ. (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5(12): 1023–1025.

    Article  CAS  Google Scholar 

  • Vankoningsloo S, de Longueville F, Evrard S, et al. (2008) Gene expression silencing with “specific” small interfering RNA goes beyond specificity- a study of key parameters to take into account in the onset of small interfering RNA off-target effects. FEBS J 275: 2736–2753.

    Article  Google Scholar 

  • Watts JK, Deleavey GF, Damha MJ. (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13(19/20): 842–854.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by NIH grants (CA 110793, 109298, CA128797, and RC2GM092599), the Ovarian Cancer Research Fund, Inc. (Program Project Development Grant), U. T. M. D. Anderson Cancer Center SPORE (P50CA083639), the Zarrow Foundation, the Marcus Foundation, the Betty Anne Asche Murray Distinguished Professorship, and the EIF Foundation to A.K.S. E.M. was supported by the U. T. M. D. Anderson Cancer Center Ovarian Cancer Spore (P50CA083639), Ovarian Cancer Program of the Department Of Defense (OC-073399), the National Cancer Institute Partnership Program (U54 96297, U54 96300) and a grant from the Puerto Rico Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Sood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mora, E.M., Mangala, S.L., Lopez-Berestein, G., Sood, A.K. (2010). RNAi: A New Paradigm in Cancer Gene Therapy. In: Roth, J. (eds) Gene-Based Therapies for Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6102-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6102-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6101-3

  • Online ISBN: 978-1-4419-6102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics