Skip to main content

Innate Immune Response to Infectious Biofilms

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The term “innate immunity” was first promoted by Ilya Metchnikoff to describe the ability of phagocytes to protect the host from infection. For his achievements in innate immunity, Metchnikoff together with Paul Ehrlich, the father of adaptive immunity, were awarded the Nobel prize in 1908. This event made it official: immunology had become an academic discipline in its own right.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680

    PubMed  CAS  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    PubMed  CAS  Google Scholar 

  • Alhede M, Bjarnsholt T, Jensen PØ et al (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 55(11):3500–3508

    Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59(4):1114–1128

    PubMed  CAS  Google Scholar 

  • Alvarez ME, Fuxman Bass JI, Geffner JR et al (2006) Neutrophil signaling pathways activated by bacterial DNA stimulation. J Immunol 177(6):4037–4046

    PubMed  CAS  Google Scholar 

  • Alvarez-Ortega C, Harwood CS (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65(1):153–165

    PubMed  CAS  Google Scholar 

  • Babior BM, Kipnes RS, Curnuttte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744

    PubMed  CAS  Google Scholar 

  • Balint B, Kharitonov SA, Hanazawa T et al (2001) Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. Eur Respir J 17(6):1201–1207

    PubMed  CAS  Google Scholar 

  • Balloy V, Verma A, Kuravi S et al (2007) The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 2007 196(2):89–296

    Google Scholar 

  • Baltimore RS, Christie CD, Smith GJ (1989) Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140(6):1650–1661

    PubMed  CAS  Google Scholar 

  • Bartlett JA, Fischer AJ, McCray PB Jr (2008) Innate immune functions of the airway epithelium. In: Egesten A, Schmidt A, Herwald H (eds) Trends in Innate Immunity. Contrib Microbiol. Basel, Karger, 15:78–100

    Google Scholar 

  • Bjarnsholt T, Jensen PØ, Burmølle M et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(2):373–383

    PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Kirketerp-Møller K, Jensen PØ et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10

    PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Fiandaca M J et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44(6):547–558

    PubMed  Google Scholar 

  • Boonstra A, Asselin-Paturel C, Gilliet M et al (2003) Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J Exp Med 197(1):101–109

    PubMed  CAS  Google Scholar 

  • Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 70(3):550–557

    PubMed  CAS  Google Scholar 

  • Brady RA, Leid JG, Camper AK et al (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74(6):3415–3426

    PubMed  CAS  Google Scholar 

  • Cantin AM, White TB, Cross CE et al (2007) Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11–12, 2003. Free Radic Biol Med 42(1):15–31

    PubMed  CAS  Google Scholar 

  • Carlsson M, Sjöholm AG, Eriksson L et al (2005) Deficiency of the mannan-binding lectin pathway of complement and poor outcome in cystic fibrosis: bacterial colonization may be decisive for a relationship. Clin Exp Immunol 139(2):306–313

    PubMed  CAS  Google Scholar 

  • Chen DL, Ferkol TW, Mintun MA et al (2006) Quantifying pulmonary inflammation in cystic fibrosis with positron emission tomography. Am J Respir Crit Care Med 173(12):1363–1369

    PubMed  Google Scholar 

  • Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49(6):2276–2282

    PubMed  CAS  Google Scholar 

  • Ciofu O, Lee B, Johannesson M et al (2008) Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154(1):103–113

    PubMed  CAS  Google Scholar 

  • Colonna M, Pulendran B, Iwasaki A (2006) Dendritic cells at the hostpathogen interface. Nat Immunol 7(2):117–120

    PubMed  CAS  Google Scholar 

  • Cutler CW, Jotwani R (2006) Dendritic cells at the oral mucosal interface. J Dent Res 85(8):678–689

    PubMed  CAS  Google Scholar 

  • Dabbagh K, Dahl ME, Stepick-Biek P et al (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168(9):4524–4530

    PubMed  CAS  Google Scholar 

  • Davies J, Neth O, Alton E et al (2000) Differential binding of mannose-binding lectin to respiratory pathogens in cystic fibrosis. Lancet 355(9218):1885–1886

    PubMed  CAS  Google Scholar 

  • Downey DG, Bell SC, Elborn JS (2009) Neutrophils in cystic fibrosis. Thorax 64(1):81–88

    PubMed  CAS  Google Scholar 

  • Flo TH, Ryan L, Latz E et al (2002) Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem 277(38):35489–35495

    PubMed  CAS  Google Scholar 

  • Garrett ES, Perlegas D, Wozniak DJ (1999) Negative Control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the Alternative Sigma Factor AlgT (AlgU). J Bacteriol 181(23):7401–7404

    PubMed  CAS  Google Scholar 

  • Greene CM, Carroll TP, Smith SG et al (2005) TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells. J Immunol 174(3):1638–1646

    PubMed  CAS  Google Scholar 

  • Fuxman Bass JI, Gabelloni ML, Alvarez ME et al (2008) Characterization of bacterial DNA binding to human neutrophil surface. Lab Invest 88(9):926–937

    PubMed  CAS  Google Scholar 

  • Haggie PM, Verkman AS (2009) Defective organellar acidification as a cause of cystic fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol Physiol 296(6):L859–L867

    PubMed  CAS  Google Scholar 

  • Hannah SK, Mecklenburgh I, Rahman GJ et al (1995) Hypoxia prolongs neutrophil survival in vitro. FEBS Lett. 372(2–3):233–237

    PubMed  CAS  Google Scholar 

  • Hauber HP, Tulic MK, Tsicopoulos A et al (2005) Toll-like receptors 4 and 2 expression in the bronchial mucosa of patients with cystic fibrosis. Can Respir J 12(1):13–18

    PubMed  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410(6832):1099–1103

    PubMed  CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745

    PubMed  CAS  Google Scholar 

  • Ito T, Amakawa R, Kaisho T et al (2002) Interferon-a and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195(11):1507–1512

    PubMed  CAS  Google Scholar 

  • Jankovic D, Kullberg MC, Hieny S et al (2002) In the absence of IL-12, CD4+ T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10-/- setting. Immunity 16(3):429–439

    PubMed  CAS  Google Scholar 

  • Jensen ET, Kharazmi A, Garred P et al (1993) Complement activation by Pseudomonas aeruginosa biofilms. Microb Pathog 15(5):377–388

    PubMed  CAS  Google Scholar 

  • Jensen PØ, Moser C, Kobayashi O et al (2004) Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection. Clin Exp Immunol 137(3):478–485

    PubMed  CAS  Google Scholar 

  • Jensen PØ, Moser C, Kharazmi A et al (2006) Increased serum concentration of G-CSF in cystic fibrosis patients with chronic Pseudomonas aeruginosa pneumonia. J Cyst Fibros 5(3):145–151

    PubMed  CAS  Google Scholar 

  • Jensen PØ, Bjarnsholt T, Phipps R et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(5):329–1338

    Google Scholar 

  • Jesaitis AJ, Franklin MJ, Berglund D et al (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions J Immunol 171(8):4329–4339

    PubMed  CAS  Google Scholar 

  • Jones AM, Martin L, Bright-Thomas RJ et al (2003) Inflammatory markers in cystic fibrosis patients with transmissible Pseudomonas aeruginosa. Eur Respir J 22(3):503–506

    PubMed  CAS  Google Scholar 

  • Jones KL, Hegab AH, Hillman BC et al (2000). Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol 30(2):79–85

    PubMed  CAS  Google Scholar 

  • Kaisho T, Hoshino K, Iwabe T et al (2002) Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int Immunol 14(7):695–700

    PubMed  CAS  Google Scholar 

  • Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3(12):984–993

    PubMed  CAS  Google Scholar 

  • Kaufmann SH (2008) Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat Immunol 9(7):705–712

    PubMed  CAS  Google Scholar 

  • Kettle AJ, Chan T, Osberg I et al (2004) Myeloperoxidase and protein oxidation in the airways of young children with cystic fibrosis. Am J Respir Crit Care Med 170(12):1317–1323

    PubMed  Google Scholar 

  • Kharazmi A, Rechnitzer C, Schiøtz PO et al (1987) Priming of neutrophils for enhanced oxidative burst by sputum from cystic fibrosis patients with Pseudomonas aeruginosa infection. Eur J Clin Invest 17(3):256–261

    PubMed  CAS  Google Scholar 

  • Kharazmi A, Nielsen H, Bendtzen K (1988) Modulation of human neutrophil and monocyte chemotaxis and superoxide responses by recombinant TNF-alpha and GM-CSF. Immunobiology 177(4–5):363–370

    PubMed  CAS  Google Scholar 

  • Kimbrell DA, Beutler B (2001) The evolution and genetics of innate immunity. Nat Rev Genet 2(4):256–267

    PubMed  CAS  Google Scholar 

  • Kirketerp-Møller K, Jensen PØ, Fazli M et al (2008) Distribution, organization, and ecology of bacteria in chronic wounds J Clin Microbiol 46(8): 2717–2722

    PubMed  Google Scholar 

  • Kolpen M, Hansen CR, Bjarnsholt T et al (2010) Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 65(1):57–62

    Google Scholar 

  • Koller B, Kappler M, Latzin P et al (2008) LR expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-mediated up-regulation of TLR5 expression in cystic fibrosis lung disease. J Immunol 181(4):2753–2763

    PubMed  CAS  Google Scholar 

  • Kronborg G, Fomsgaard A, Jensen ET et al (1993) Induction of oxidative burst response in human neutrophils by immune complexes made in vitro of lipopolysaccharide and hyperimmune serum from chronically infected patients. APMIS 101(11):887–894

    PubMed  CAS  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175(11):7512–7818

    PubMed  CAS  Google Scholar 

  • Madianos PN, Bobetsis YA, Kinane DF (2005) Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol 32(S6):57–71

    PubMed  CAS  Google Scholar 

  • Mathee K, Ciofu O, Sternberg C et al (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145(6):1349–1357

    PubMed  CAS  Google Scholar 

  • Moreau-Marquis S, Bomberger JM, Anderson GG et al (2008) The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 295(1):L25–37

    Google Scholar 

  • Mayer-Hamblett N, Aitken ML, Accurso FJ et al (2007) Association between pulmonary function and sputum biomarkers in cystic fibrosis. Am J Respir Crit Care Med 175(8):822–828

    PubMed  Google Scholar 

  • Muhlebach MS, Stewart PW, Leigh MW et al (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patient. Am J Respir Crit Care Med 160(1):186–191

    PubMed  CAS  Google Scholar 

  • Muir A, Soong G, Sokol S et al (2004) Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am J Respir Cell Mol Biol 30(6):777–783

    PubMed  CAS  Google Scholar 

  • Nathan C, Srimal S, Farber C et al (1989) Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CDU/CD18 integrins. J Cell Biol 109(3):1341–49

    Google Scholar 

  • Nathan C (2008) Metchnikoff’s Legacy in 2008. Nat Immunol 9(7):695–698

    PubMed  CAS  Google Scholar 

  • Nobel Lectures (1967) Physiology or medicine 1901–1921. Elsevier, Amsterdam

    Google Scholar 

  • Oliver A, Canton R, Campo P et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288(5469):1251–1254

    PubMed  CAS  Google Scholar 

  • Otterlei M, Sundan A, Skjak-Braek G et al (1993) Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect Immun 61(5):1917–1925

    PubMed  CAS  Google Scholar 

  • Parker LC, Whyte MK, Dower SK et al (2005) The expression and roles of Toll-like receptors in the biology of the human neutrophil. J Leukocyte Biol 77(6):886–892

    PubMed  CAS  Google Scholar 

  • Parker LC, Prince LR, Sabroe I (2007) Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147(2):199–207

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Kharazmi A, Espersen F et al (1990a) Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58(10):3363–3368

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Espersen F, Høiby N et al (1990b) Immunoglobulin A and immunoglobulin G antibody responses to alginates from Pseudomonas aeruginosa in patients with cystic fibrosis. J Clin Microbiol 28(4):747–755

    PubMed  CAS  Google Scholar 

  • Pedersen SS (1992) Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS S28:1–79

    Google Scholar 

  • Pessi G, Haas D (2000) Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J Bacteriol 182(24):6940–6949

    PubMed  CAS  Google Scholar 

  • Petersen SV, Thiel S, Jensenius JC (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38(2–3):133–149

    PubMed  CAS  Google Scholar 

  • Petit-Bertron AF, Tabary O, Corvol H et al (2008) Circulating and airway neutrophils in cystic fibrosis display different TLR expression and responsiveness to interleukin-10. Cytokine 41(1):54–60

    PubMed  CAS  Google Scholar 

  • Pier GB, Coleman F, Grout M et al (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69(3):1895–1901

    PubMed  CAS  Google Scholar 

  • Power MR, Peng Y, Maydanski E et al (2004) The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 279(47):49315–49322

    PubMed  CAS  Google Scholar 

  • Power MR, Marshall JS, Yamamoto M et al (2006) The myeloid differentiation factor 88 is dispensable for the development of a delayed host response to Pseudomonas aeruginosa lung infection in mice. Clin Exp Immunol 146(2):323–329

    PubMed  CAS  Google Scholar 

  • Rambach G, Würzner R, Speth C (2008) Complement: an efficient sword of innate immunity. In: Egesten A, Schmidt A, Herwald H (eds) Trends in innate immunity. Contrib Microbiol, vol 15. Karger, Basel, pp 78–100

    Google Scholar 

  • Rhoades ER, Archambault AS, Greendyke R et al (2009) Mycobacterium abscessus Glycopeptidolipids mask underlying cell wall phosphatidyl-myo-inositol mannosides blocking induction of human macrophage TNF-alpha by preventing interaction with TLR2. J Immunol 183(3):1997–2007

    PubMed  CAS  Google Scholar 

  • Roghanian A, Drost EM, MacNee W et al (2006) Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase. Am J Respir Crit Care Med 174(11):1189–1198

    PubMed  CAS  Google Scholar 

  • Ryall B, Davies JC, Wilson R et al (2008) Pseudomonas aeruginosa, cyanide accumulation and lung function in CF and non-CF bronchiectasis patients. Eur Respir J 32(3):740–747

    PubMed  CAS  Google Scholar 

  • Sanderson K, Wescombe L, Kirov SM et al (2008) Bacterial cyanogenesis occurs in the cystic fibrosis lung. Eur Respir J 32(2):329–333

    PubMed  CAS  Google Scholar 

  • Schiøtz PO, Nielsen H, Høiby N et al (1978) Immune complexes in the sputum of patients with cystic fibrosis suffering from chronic Pseudomonas aeruginosa lung infection. Acta Pathol Microbiol Scand C 86(1):37–40

    PubMed  Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation damaged base 8-oxodG. Nature 349(6308):431–434

    PubMed  CAS  Google Scholar 

  • Shimono M, Ishikawa T, Enokiya Y et al (2003) Biological characteristics of the junctional epithelium. J Electron Microsc (Tokyo) 52(6):627–639

    CAS  Google Scholar 

  • Simmons WL, Dybvig K (2007) Biofilms Protect Mycoplasma pulmonis Cells from Lytic Effects of Complement and Gramicidin. Infect Immun 75(8):3696–3699

    PubMed  CAS  Google Scholar 

  • Skerrett SJ, Liggitt HD, Hajjar AM et al (2004) Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defence against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 172(6):3377–3381

    PubMed  CAS  Google Scholar 

  • Suter S, Schaad UB, Roux L et al (1984) Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Inf Dis 149(4):523–531

    CAS  Google Scholar 

  • Stahl PD, Ezekowizt B (1998) The mannose receptor is a pattern recognition receptor involved in host defense. Curr Opin Immunol 10(1):50–55

    PubMed  CAS  Google Scholar 

  • Strober W, Murray PJ, Kitani A et al (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 6(1):9–20

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17(1):1–14

    PubMed  CAS  Google Scholar 

  • Takeda K, Akira S (2003) Toll receptors and pathogen resistance. Cell Microbiol 5(3):1431–1453

    Google Scholar 

  • Trevani AS, Chorny A, Salamone G et al (2003) Bacterial DNA activates human neutrophils by a CpG-independent pathway. Eur J Immunol 33(11):3164–3174

    PubMed  CAS  Google Scholar 

  • Turner MW, Hamvas RM (2000) Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet 2(3):305–322

    PubMed  CAS  Google Scholar 

  • van der Vliet A, Nguyen MN, Shigenaga MK et al (2000) Myeloperoxidase and protein oxidation in cystic fibrosis. Am J Physiol 279(3):L537–L546

    Google Scholar 

  • van der Vliet A (2008) NADPH oxidases in lung biology and pathology: host defense enzymes, and more. Free Radic Biol Med 44(6):938–955

    PubMed  Google Scholar 

  • van Gennip M, Christensen LD, Alhede M et al (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117(7):537–546

    PubMed  Google Scholar 

  • Walsh LJ (2003) Mast cells and oral inflammation. Crit Rev Oral Biol Med 14(3):188–198

    PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC et al (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487

    PubMed  CAS  Google Scholar 

  • Wiebe BM, Burton CM, Milman N et al (2006) Morphometric examination of native lungs in human lung allograft recipients. APMIS 114(11):795–804

    PubMed  CAS  Google Scholar 

  • Worthley DL, Bardy PG, Mullighan CG (2005) Mannose-binding lectin: biology and clinical implications. Intern Med J 35(9):548–555

    PubMed  CAS  Google Scholar 

  • Wörlitzsch D, Bensel T, Borneff-Lipp M et al (2007) Pseudomonas aeruginosa and lactate in vitro and in CF sputum. Pediatr Pulmonol S30:317–317

    Google Scholar 

  • Wörlitzsch D, Tarran R, Ulrich M et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325

    PubMed  Google Scholar 

  • Yang L, Haagensen JAJ, Jelsbak L et al (2008) In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190(8):2767–2776

    PubMed  CAS  Google Scholar 

  • Yuo A, Kitagawa S, Kasahara T et al (1991) Stimulation and priming of human neutrophils by interleukin-8: cooperation with tumor necrosis factor and colony-stimulating factors. Blood 78(10):2708–2714

    PubMed  CAS  Google Scholar 

  • Zhang Z, Louboutin JP, Weiner DJ et al (2005) Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 73(11):7151–7160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Østrup Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jensen, P.Ø., Moser, C. (2011). Innate Immune Response to Infectious Biofilms. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_11

Download citation

Publish with us

Policies and ethics