Skip to main content

Closed-Loop Production Systems

  • Chapter
  • First Online:

Abstract

This chapter discusses the closed-loop aspects of production systems in the context of green and sustainable manufacturing. Specifically, we consider the life cycle of production systems from design and construction through use, decommissioning, and recycling or repurposing. We discuss resource and economic efficiency and present a series of examples of life cycle analysis of manufacturing systems. We also describe how to design systems for reduced life cycle impact. Examples include comparisons of different machine tool systems, process parameter optimization, consumable utilization, plant services, and plant design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Emblemsvag J (2003) Life cycle costing: using activity based costing and Monte Carlo simulation to manage future costs and risks. Wiley, New Jersey

    Google Scholar 

  2. Harms R, Fleschutz T, Seliger G (2008) Knowledge based approach to assembly system reuse. Proceedings of the ninth biennial ASME conference on engineering systems design and analysis ESDA

    Google Scholar 

  3. Woodward D (1997) Life cycle costing—theory, information acquisition and application. Int J Project Manag 15(6):335–344

    Article  Google Scholar 

  4. Ferry DJO, Flanagan R (1991) Life cycle costing a radical approach. Construction Industry Research and Information Association, London

    Google Scholar 

  5. Jolliet O, Dubreuil D, Gloria T, Hauschild M (2005) Progress in life cycle impact assessment within the UNEP/SETAC life cycle initiative. Int J LCA 10(6):447–448

    Article  Google Scholar 

  6. Seliger G (ed) (2007) Sustainability in manufacturing—recovery of resources in product and material cycles. Springer, Berlin

    Google Scholar 

  7. Jovane F, Yoshikawa H, Alting L, Boer CR, Westkamper E, Williams D, Tseng M, Seliger G, Paci AM (2008) The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Ann Manuf Technol 57:641–659

    Article  Google Scholar 

  8. Wiendahl HP, ElMaraghy H, Nyhuis P, Zдh M, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56:783–809

    Article  Google Scholar 

  9. Koren Y (2005) Reconfigurable manufacturing and beyond. CIRP third international conference on reconfigurable manufacturing systems, Keynote paper

    Google Scholar 

  10. Dashchenko A (ed) (2005) Reconfigurable manufacturing systems and transformable factories. Springer, Berlin

    Google Scholar 

  11. Takata S, Kirnura F, van Houten F, Westkämper E, Shpitalni M, Ceglarek D, Lee J (2004) Maintenance: changing role in life cycle management. CIRP Ann Manuf Technol 53(2):643–655

    Article  Google Scholar 

  12. Fleschutz T, Harms R, Selgier G (2009) Valuation of assembly equipment reuse with real options. proceedings of production and operations mangement society conference (POMS) 20th annual conference, Orlando, Florida

    Google Scholar 

  13. Fleschutz T, Harms R, Seliger G, Rusina F, Bottero F (2008) Evaluation of the reconfiguration and reuse of assembly equipment. Proceedings of second cirp conference on assembly technology and systems, University of Windsor, Toronto

    Google Scholar 

  14. Fleschutz T (2009) Beruecksichtigung der oekologischen Dimension in Investitionsentscheidungen bei Montageanlagen. Oekobilanzierung 2009: Ansaetze und Weiterentwicklungen zur Operationalisierung von Nachhaltigkeit, KIT, Karlsruhe, Germany, 157–166

    Google Scholar 

  15. Wuppertal Institute for Climate, Environment and Energy (2009) Research for sustainable development. http://www.wupperinst.org/uploads/sbs_dl_list/Factor_W.pdf. Accessed 7 Jan 2011

  16. PRé Consultants (2011) SimaPro software. http://www.pre.nl/simapro/impact_assessment_methods.htm. Accessed 7 Jan 2011

  17. Shimoda M (2002) LCA case of machine tool. Symposium 2002 of the Japan Society for Precision Engineering Spring Annual Meeting, pp 37–41

    Google Scholar 

  18. Diaz N, Helu M, Jayanathan S, Chen Y, Horvath A, Dornfeld D (2010) Environmental analysis of milling machine tool use in various manufacturing environments. IEEE international symposium on sustainable systems and technology, Laboratory for Manufacturing and Sustainability, Berkeley

  19. Dornfeld D, Lee DE (2007) Precision manufacturing. Springer, New York

    Google Scholar 

  20. Jovane F, Alting L, Armillotta A, Eversheim W, Feldmann K, Seliger G, Roth N (1993) A key issue in product life cycle: disassembly and the environment. Ann CIRP 42(2):651–658

    Article  Google Scholar 

  21. Harjula T, Rapoza B, Knight WA, Boothroyd B (1996) Design for disassembly and the environment. Ann CIRP 45(1):109–114

    Article  Google Scholar 

  22. Ilgin MA, Gupta SM (2010) Environmentally conscious manufacturing and product recovery (ECMPRO): a review of the state of the art. J Environ Manag 91(3):563–591

    Article  Google Scholar 

  23. Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol 172:299–304

    Article  Google Scholar 

  24. Weinert K, Inasaki I, Sutherland JW, Wakabayashi T (2004) Dry machining and minimum quantity lubrication. Ann CIRP 53(2):511–537

    Article  Google Scholar 

  25. Klocke F, Eisenblatter G (1997) Dry cutting. Ann CIRP 46(2):519–527

    Article  Google Scholar 

  26. Munoz AA, Sheng P (1995) An analytical approach for determining the environmental impact of machining processes. J Mater Process Technol 53(3):736–758

    Article  Google Scholar 

  27. Krishnan N, Sheng PS (2000) Environmental versus conventional planning for machined components. Ann CIRP 49(1):363–366

    Article  Google Scholar 

  28. Narita H, Kawamura H, Norihisa T, Chen LY, Fujimoto H, Hasebe T (2006) Development of prediction system for environmental burden for machine tool operation. JSME Int J Series C 49(4):1188–1195

    Article  Google Scholar 

  29. Narita H, Desmira N, Fujimoto H (2008) Environmental burden analysis for machining operation using LCA method. Proceedings of the 41st CIRP conference on manufacturing systems

    Google Scholar 

  30. Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. Proceedings of the 2004 ASME international mechanical engineering congress and RD&D expo. Anaheim, California

    Google Scholar 

  31. Taniguchi M, Kakinuma Y, Aoyama T, Inasaki I (2006) Influences of downsized design for machine tools on the environmental impact. Proceedings of the MTTRF 2006 annual meeting

    Google Scholar 

  32. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. Proceedings of the 13th CIRP international conference on life cycle engineering, pp 623–627

    Google Scholar 

  33. Ashby MF (2009) Materials and the environment: eco-informed material choice. Butterworth-Heinemann, Burlington, MA

    Google Scholar 

  34. Kalpakjian S (1996) Manufacturing processes for engineering materials. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  35. Haapala K, Rivera JL, Sutherland J (2009) Reducing environmental impacts of steel product manufacturing. Trans North Am Manuf Res Instit SME 37:419–426

    Google Scholar 

  36. Baniszewski B (2005) An environmental impact analysis of grinding. SB thesis. Dep Mech Eng Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  37. Independent System Operators (ISO) New England (2010) Connecticut: 2010 State Profile. http://isonewengland.org/nwsiss/grid_mkts/key_facts/ct_01-2010_profile.pdf. Accessed 11 Oct 2010

  38. Fthenakis VM, Kim HC (2007) Greenhouse gas emissions from solar electric and nuclear power: a life-cycle study. Energy Policy 35(4):2549–2557

    Article  Google Scholar 

  39. Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper colorado river basin. Environ Sci Technol 36(14):3194–3200

    Article  Google Scholar 

  40. Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(11–12):2042–2056

    Article  Google Scholar 

  41. Nyberg M (2009) 2008 Net system power report. California Energy Commission. CEC-200-2009-010

    Google Scholar 

  42. Gagnon L, Bélanger C, Uchiyama Y (2002) Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30(14):1267–1278

    Article  Google Scholar 

  43. Diaz N, Helu, M, Jarvis A, Toenissen S, Dornfeld D, Schlosser R (2009) Strategies for minimum energy operation for precision machining. Proceedings of machine tool technologies research foundation 2009 annual meeting

    Google Scholar 

  44. Tawakoli T, Hadad MJ, Sadeghi MH, Daneshi A, Stöckert S, Rasifard A (2009) An experimental investigation of the effects of workpiece and grinding parameters on minimum quantity lubrication—MQL grinding. Int J Mach Tools Manuf 49:924–932

    Article  Google Scholar 

  45. Wakabayashi T, Inasaki I, Suda S (2006) Tribological action and optimal performance: research activities regarding MQL machining fluids. J Machining Sci Technol Special Issue Environmentally-Conscious Machining 10(1):59–85

    Google Scholar 

  46. Sreejith P, Ngoi B (2000) Dry machining: machining of the future. J Mater Process Technol 101:287–291

    Article  Google Scholar 

  47. Shefelbine W, Dornfeld DA (2004) The effect of dry machining on burr size. Laboratory for Manufacturing and Sustainability, Berkeley, UC. http://escholarship.org/uc/item/603201b9. Accessed 8 Oct 2010

  48. Aoyama T, Kakinuma Y, Yamashita M, Aoki M (2008) Development of a new lean lubrication system for near dry machining process. Ann CIRP 57:125–128

    Article  Google Scholar 

  49. Thierry M, Salomon M, van Nunen J, Van Wassenhove LN (1995) Strategic issues in product recovery management. Calif Manag Rev 37(2):114–135

    Article  Google Scholar 

  50. Beamon BM (1999) Designing the green supply chain. Logist Inform Manag 12(4):332–342

    Article  Google Scholar 

  51. VDI 2243 (2002) Recycling-oriented product development. Beuth, Berlin

    Google Scholar 

  52. Ijomah WL, Bennett JP, Pearce J (1999) Remanufacturing: evidence of environmentally conscious business practice in the UK. First international symposium on environmentally conscious design and inverse manufacturing. DOI 10.1109/ECODIM.1999.747607

    Google Scholar 

  53. Amezquita T, Hammond R, Salazar M, Bras B (1995) Characterizing the remanufacturability of engineering systems. ASME Design Technical Engineering Conferences, Boston, pp 271–278

    Google Scholar 

  54. Lund RT (1996) The remanufacturing industry: hidden giant. Boston University, Boston, MA

    Google Scholar 

  55. Nasr N, Thurston M (2006) Remanufacturing: a key enabler to sustainable product systems. Thirteenth CIRP international conference on life cycle engineering, Leuven, Belgium

    Google Scholar 

  56. Östlin J (2008) On remanufacturing systems: analysing and managing material flows and remanufacturing processes. Dissertation, Linköpings Universitet

    Google Scholar 

  57. Sundin E, Tang O, Marten E (2005) The Swedish remanufacturing industry: an overview of present status and future potential. Twelfth CIRP international conference on life cycle engineering, Grenoble, France

    Google Scholar 

  58. Östlin J (2005) Material and process complexity—implications for remanufacturing. Fourth international symposium on environmentally conscious design and inverse manufacturing, Tokyo, Japan

    Google Scholar 

  59. Fleischmann M, Krikke HR, Dekker M, Flapper SD (2000) A characterisation of logistics networks for product recovery. Omega Int J Manag Sci 28:653–666

    Article  Google Scholar 

  60. Caterpillar US Website (2009) Company website. http://www.cat.com. Accessed 9 Jan 2009

  61. Caterpillar (2008) Caterpillar Remanufacturing Singapore Overview. Presentation. http://web.mit.edu/sma/events/career_fair/2008/cat_overview.pdf. Accessed 9 Jan 2009

  62. ABB Ltd (2010) Automation division. ABB Certified Refurbished Robot. Available at http://library.abb.com/global/scot/scot241.nsf/veritydisplay/69eb4c57b6bd0c7bc125758a0030f3ca/$File/ABB. Certified Refurbished Robot v4_final.pdf. Accessed 21 April 2009

  63. Morel MK (2006) Refurbished robots can save replacement costs. Robotics World 24(1):4–7

    Google Scholar 

  64. Steinhilper R (1998) Remanufacturing: The ultimate form of recycling. Fraunhofer IRB Verlag, Stuttgart, Germany

    Google Scholar 

  65. Weule H, Buchholz C (2001) Method for the assessment of reuse suitability within modular assembly systems. Assembly Automation 21(3):241–246

    Article  Google Scholar 

  66. Schmälzle A (2001) Bewertungssystem für die Generalüberholung von Montageanlagen: Ein Beitrag zur wirtschaftlichen Gestaltung geschlossener Facility-Management-Systeme im An-lagenbau, Dissertation, Universität Karlsruhe

    Google Scholar 

  67. Ford Motor Company (2011) Company website. http://media.ford.com/article_display.cfm?article_id=2847. Accessed 7 Jan 2011

  68. Sweeney R (2002) Cutting the cost of compressed air. Machine Design 74(21):76

    Google Scholar 

  69. Risi JD (1995) Energy savings with compressed air. Energy Eng J Assoc Energy Eng 92(6):49–58

    Google Scholar 

  70. Kaya AD, Phelan P, Chau D, Sarac HI (2002) Energy conservation in compressed air systems. Int J Energy Res 26:837–849

    Article  Google Scholar 

  71. Curtner KL, O’Neill PJ, Winter D, Bursch P (1997) Simulation-based features of the compressed air system description tool, XCEEDTM. Proc Intl Building Performance Simulation Assoc Conf, Prague, Czech Republic, September 8–10

    Google Scholar 

  72. Yuan C, Zhang T, Rangarajan A, Dornfeld D, Ziemba W, Whitnbeck R (2006) A decision-based analysis of compressed air usage patterns in automotive manufacturing. SME J Manuf Syst 25(4):293–300

    Article  Google Scholar 

  73. Cox R (1996) Compressed air—clean energy in a green world. Glass Int 19(2):2

    Google Scholar 

  74. Foss RS (2002) Managing compressed air energy part I: demand side issues. Maintenance technology online. http://www.mt-online.com/articles/0801_mngcompressedair.cfm. Accessed 26 May 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moneer Helu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vijayaraghavan, A., Yuan, C., Diaz, N., Fleschutz, T., Helu, M. (2013). Closed-Loop Production Systems. In: Dornfeld, D. (eds) Green Manufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6016-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6016-0_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6015-3

  • Online ISBN: 978-1-4419-6016-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics