Skip to main content

Genetic Engineering of Saccharum

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Over the last two decades, substantial progress has been made in the genetic engineering of sugarcane (Saccharum spp.) through improvements in tissue culture procedures, allowing a higher efficiency of generating transgenic plants using Agrobacterium-mediated and biolistic gene transfers. Elucidation of gene function and development of varieties with improved yield, sugar level, fiber content, and other desirable traits and products for superior performance have been possible through transgenic technologies. Researchers are now focusing on optimizing existing methodologies and developing new technologies for the production of elite varieties, enhancement of transgene expression, and manipulation of metabolic pathways for improved molecular breeding and commercial exploitation. At present, no transgenic sugarcane has been released to the commercial market, but with the aid of large investments from the private sector, the commercialization of this major sugar- and biomass-producing crop should be accelerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraha TG (2005) Isolation and characterization of a culm-specific promoter element from sugarcane. MSc dissertation, Department of Botany and Zoology, Institute of Biotechnology, Stellenbosch University, South Africa

    Google Scholar 

  • Albert HH, Wei H (2003) Promoter of the sugarcane UBI4 gene. US Patent No. 6,638,766

    Google Scholar 

  • Albert HH, Wei H (2004) Sugarcane ubi9 gene promoter sequence and methods of use thereof. US Patent No. 6,686,513

    Google Scholar 

  • Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Genetic modification of plants Biotechnology in agriculture and forestry, vol 64. Springer-Verlag, Berlin, pp 453–472

    Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084

    PubMed  CAS  Google Scholar 

  • Arencibia AD, Carmona ER (2006) Sugarcane (Saccharum spp.). In: Wang K (ed) Methods in molecular biology, vol 344, 2nd edn. Agrobacterium protocols, vol 2. Humana Press Inc., New Jersey, pp 227–235

    Google Scholar 

  • Arencibia A, Molina P, Gutiérrez C, Fuentes A, Greenidge V, Menéndez E, De la Riva G, Selman-Houssein G (1992) Regeneration of transgenic sugarcane (Saccharum officinarum L.) plants from intact meristematic tissues transformed by electroporation. Biotechnol Aplicada 9:156–165

    Google Scholar 

  • Arencibia A, Molina PR, de la Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum officinarum L) plants by intact cell electroporation. Plant Cell Rep 14:305–309

    CAS  Google Scholar 

  • Arencibia A, Vázquez RI, Prieto D, Téllez P, Carmona ER, Coego A, Hernández L, de la Riva GA, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer attack. Mol Breed 3:247–255

    Google Scholar 

  • Arencibia AD, Carmona ER, Téllez P, Chan M-T, Yu S-M, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:213–222

    CAS  Google Scholar 

  • Arencibia AD, Carmona ER, Cornide MT, Castiglione S, O’Relly J, Chinea A, Oramas P, Sala F (1999) Somaclonal variation in insect-resistant sugarcane (Saccharum hybrid) plants produced by cell electroporation. Transgenic Res 8:349–360

    CAS  Google Scholar 

  • Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, Kumar PA, Premachandran MN, Subramonian N (2010) Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Rep 29:383–395

    PubMed  CAS  Google Scholar 

  • Asano T, Tsudzuki T, Takahashi S, Shimada H, Kadowaki KI (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99

    PubMed  CAS  Google Scholar 

  • Barba R, Nickell LG (1969) Nutrition and organ differentiation in tissue cultures of sugarcane, a monocotyledon. Planta 89:299–302

    Google Scholar 

  • Barone P, Zhang X-H, Widholm JM (2009) Tobacco plastid transformation using the feed-back-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    PubMed  CAS  Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 9:327–336

    Google Scholar 

  • Behera KK, Sahoo S (2009) Rapid in vitro micro propagation of sugarcane (Saccharum officinarum L. cv-Nayana) through callus culture. Nat Sci 7:1–10

    Google Scholar 

  • Beyene G, Buenrostro-Nava MT, Damaj MB, Gao S, Molina J, Mirkov TE (2011) Unprecedented enhancement of reporter gene expression from minimal cassettes using a double terminator. Plant Cell Rep 30:13–25

    Google Scholar 

  • Birch RG (2007) Metabolic engineering in sugarcane: assisting the transition to a bio-based economy. In: Verpoorte RA, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Berlin, pp 249–281

    Google Scholar 

  • Birch RG, Franks T (1991) Development and optimization of microprojectile systems for plant genetic transformation. Aust J Plant Physiol 18:453–469

    CAS  Google Scholar 

  • Birch RG, Maretzki A (1993) Transformation of sugarcane. In: Bajaj YPS (ed) Plant proto-plasts and genetic engineering IV. Biotechnology in agriculture and forestry, vol 23, Springer, Heidelberg, pp 248–360

    Google Scholar 

  • Birch GR, Shen B, Sawyer BJB, Huttner E, Tucker WQJ, Betzner AS (2010a) Evaluation and application of a luciferase fusion system for rapid in vivo analysis of RNAi targets and constructs in plants. Plant Biotechnol J 8:465–475

    PubMed  CAS  Google Scholar 

  • Birch RG, Bower RS, Elliott AR (2010b) Highly efficient, 5′-sequence-specific transgene silencing in a complex polyploid. Trop Plant Biol 3:75–87

    Google Scholar 

  • Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    PubMed  CAS  Google Scholar 

  • Botha FC, Sawyer BJB, Birch RG (2001) Sucrose metabolism in the culm of transgenic sugarcane with reduced soluble acid invertase activity. Proc Int Soc Sugar Cane Technol 24:588–591

    Google Scholar 

  • Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    CAS  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    CAS  Google Scholar 

  • Bradford KJ, Deynze AV, Gutterson N, Parrott W, Strauss SH (2005) Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat Biotechnol 23:439–444

    PubMed  CAS  Google Scholar 

  • Braga DPV, Arrigoni EDB, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seeds 5:209–222

    Google Scholar 

  • Braithwaite KS, Geijskes RJ, Smith GR (2004) A variable region of the sugarcane bacilliform virus (SCBV) genome can be used to generate promoters for transgene expression in sugarcane. Plant Cell Rep 23:319–326

    PubMed  CAS  Google Scholar 

  • Brasileiro ACM, Aragão FJL (2001) Marker genes for in vitro selection of transgenic plants. J Plant Biotechnol 3:113–121

    Google Scholar 

  • Brumbley SM, Snyman SJ, Gnanasambandam A, Joyce P, Hermann SR, da Silva JAG, McQualter RB, Wang ML, Egan BT, Patterson AH, Albert HH, Moore PH (2008) Sugarcane. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic sugar, tuber and fiber crops. Wiley-Blackwell, Oxford, pp 1–58

    Google Scholar 

  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Google Scholar 

  • Carmona ER, Arencibia AD, Lopez J, Simpson J, Vargas D, Sala F (2005) Analysis of genomic variability in transgenic sugarcane plants produced by Agrobacterium tumefaciens infection. Plant Breed 124:33–38

    CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    PubMed  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    PubMed  CAS  Google Scholar 

  • Chen WC, Gartland KMA, Davey MR, Sotak R, Gartland JS, Mulligan BJ, Power JB, Cocking EC (1987) Transformation of sugarcane protoplasts by direct uptake of a selectable chimeric gene. Plant Cell Rep 6:297–301

    CAS  Google Scholar 

  • Chen WH, Davey MR, Power JB, Cocking EC (1988) Control and maintenance of plant regeneration in sugarcane callus cultures. J Exp Bot 39:251–261

    CAS  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard J, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    PubMed  CAS  Google Scholar 

  • Cheng Z, Targolli J, Wu R (2001) Tobacco matrix attachment region sequence increased transgene expression levels in rice plants. Mol Breed 7:317–327

    CAS  Google Scholar 

  • Chong BF, Bonnett GD, Glassop D, O’Shea MG, Brumbley SM (2007) Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. Plant Biotechnol J 5:240–253

    PubMed  CAS  Google Scholar 

  • Chong BF, Mills E, Bonnett GD, Gnanasambandam A (2010) Early exposure to ethylene modifies shoot development and increases sucrose accumulation rate in sugarcane. J Plant Growth Regul 29:149–163

    Google Scholar 

  • Chowdhury MKU, Vasil IK (1992) Stably transformed herbicide resistance callus of sugarcane via microprojectile bombardment of cell suspension cultures and electroporation of protoplasts. Plant Cell Rep 11:494–498

    Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    PubMed  CAS  Google Scholar 

  • Christy LA, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, George T, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scripophaga excerptalis Walker). Plant Cell Rep 28:175–184

    PubMed  CAS  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Google Scholar 

  • D’Hont A, Souza GM, Menossi M, Vincentz M, Van-Sluys M-A, Glaszmann JC, Ulian E (2008) Sugarcane: a major source of sweetness, alcohol, and bioenergy. In: Moore PH, Ming R (eds) Tropical crop plant genomics. Springer-Verlag, New York, pp 483–513

    Google Scholar 

  • Dai SH, Zheng P, Marmey P, Zhang SP, Tian WZ, Chen SY, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle gun bombardment. Mol Breed 7:25–33

    CAS  Google Scholar 

  • Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE (2010) Sugarcane DIRIGENT and O-METHYLTRANSFERASE promoters confer stem-regulated gene expression in diverse monocots. Planta 231:1439–1458

    PubMed  CAS  Google Scholar 

  • Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the cholroplast genome without the use of antibiotic selection. Curr Genet 39:109–116

    PubMed  CAS  Google Scholar 

  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23:238–245

    PubMed  CAS  Google Scholar 

  • Darbani B, Elimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montague M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    PubMed  CAS  Google Scholar 

  • De Bolle MF, Butaye KM, Goderis IJ, Wouters PF, Jacobs A, Delaure SL, Depicker A, Cammue BP (2007) The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Mol Biol 63:533–543

    PubMed  CAS  Google Scholar 

  • De Buck S, de Wilde C, van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol Breed 6:459–468

    Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads the formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  Google Scholar 

  • de la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electr J Biotechnol 1:118–133

    Google Scholar 

  • De Wilde C, Van Houdt H, De Buck S, Angenon G, Jarger GD, Depicker A (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol Biol 43:347–359

    PubMed  Google Scholar 

  • Desai NS, Suprasanna P, Bapat VA (2004) Simple and reproducible protocol for direct somatic embryogenesis from cultured immature inflorescence segments of sugarcane (Saccharum spp.). Curr Sci 87:764–768

    Google Scholar 

  • Donaldson RA (1996) Effects of ethephon applied to two sugarcane varieties to prevent flowering. Proc S Afr Sug Technol Assoc 70:38–41

    Google Scholar 

  • Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801

    PubMed  CAS  Google Scholar 

  • Elliott AR, Campbell JA, Bretell RIS, Grof CPL (1998) Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust J Plant Physiol 25:739–743

    CAS  Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, Perez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using anti-oxidant compounds. Biotechnol Aplicada 14:169–174

    Google Scholar 

  • Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsonov DL, De la Riva GA, Selman-Housein G (1998) Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. Planta 206:20–27

    Google Scholar 

  • US Environmental Protection Agency (1994) Neomycin phosphotransferase: II. Tolerance exemption. Fed Regist 56:4935

    Google Scholar 

  • Falco MC, Silva-Filho MC (2003) Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatrae saccharalis. Plant Physiol Biochem 41:761–766

    CAS  Google Scholar 

  • Falco MC, Tulmann Neto A, Ulian EC (2000) Transformation and expression of a gene for herbicide resistance in Brazilian sugarcane. Plant Cell Rep 19:1188–1194

    CAS  Google Scholar 

  • Fitch MMM, Lehrer AT, Komor E, Moore PH (2001) Elimination of sugarcane yellow leaf virus from infected sugarcane plants by meristem tip culture visualized by tissue immunoassay. Plant Pathol 50:676–680

    Google Scholar 

  • Franks T, Birch RG (1991) Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust J Plant Physiol 18:471–480

    CAS  Google Scholar 

  • Gallo-Meagher M, Irvine J (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670

    CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1996) Herbicide resistant sugarcane containing the bar gene. Crop Sci 36:1367–1374

    CAS  Google Scholar 

  • Gambley RL, Ford R, Smith GR (1993) Microprojectile transformation of sugarcane meristems and regeneration of shoots expressing β-glucuronidase. Plant Cell Rep 12:343–346

    CAS  Google Scholar 

  • Gambley RL, Bryant JD, Masel NP, Smith GR (1994) Cytokinin-enhanced regeneration of plants from microprojectile bombarded sugarcane meristematic tissue. Aust J Plant Physiol 21:603–612

    CAS  Google Scholar 

  • Gilbert RA, Gallo-Meagher M, Comstock JC, Miller JD, Jain M, Abouzid A (2005) Agronomic evaluation of sugarcane lines transformed for resistance to sugarcane mosaic virus strain E. Crop Sci 45:2060–2067

    Google Scholar 

  • Gilbert RA, Glynn NC, Comstock JC, Davis MJ (2009) Agronomic performance and genetic characterization of sugarcane transformed for resistance to sugarcane yellow leaf virus. Field Crops Res 111:39–46

    Google Scholar 

  • Gnanasambandam A, Birch RG (2004) Efficient developmental mistargeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Rep 23:435–447

    PubMed  CAS  Google Scholar 

  • Gnanasambandam A, Polkinghorne IG, Birch RG (2007) Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species. Plant Biotechnol J 5:290–296

    PubMed  Google Scholar 

  • Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 99:7–23

    PubMed  CAS  Google Scholar 

  • Groenewald J-H, Botha FC (2001) Down regulating pyrophosphate-dependent phosphofructokinase (PFP) in sugarcane. Proc Int Soc Sugar Cane Technol 24:592–594

    Google Scholar 

  • Groenewald J-H, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92

    PubMed  CAS  Google Scholar 

  • Hansom S, Bower R, Zhang L, Potier B, Elliot A, Basnayake S, Cordeiro B, Hogarth DM, Cox M, Berding N, Birch RG (1999) Regulation of transgene expression in sugarcane. Proc Int Soc Sugar Cane Technol 23:278–289

    Google Scholar 

  • Hauptmann RM, Vasil V, Ozaias-Aikins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602–606

    PubMed  CAS  Google Scholar 

  • Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348

    Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    PubMed  CAS  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–2000

    PubMed  CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    CAS  Google Scholar 

  • Ho W-J, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum offcinarum L.). The morphology and ontogeny of somatic embryos. Protoplasma 118:169–180

    Google Scholar 

  • Howard JA, Hood EE (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv Agron 85:91–124

    CAS  Google Scholar 

  • Huang FC, Klaus SM, Herz S, Zou Z, Koop HU, Golds TJ (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol Genet Genomics 268:19–27

    PubMed  CAS  Google Scholar 

  • Hussain A (2005) Biochemical and molecular investigation of somaclonal variants in sugarcane (Saccharum officinarum L. cv CoL-54). PhD dissertation, School of Biological Sciences, University of the Punjab, Lahore, Pakistan

    Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Post-transcriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    PubMed  CAS  Google Scholar 

  • Irvine JE, Benda GTA (1985) Sugarcane mosaic virus in plantlets regenerated from diseased leaf tissue. Plant Cell Tissue Org Cult 5:101–106

    Google Scholar 

  • Irvine JE, de Almedia CG (1991) Delivery of plasmid DNA through particle bombardment with an airless sprayer. Texas A&M Misc Publ 1726

    Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 28:581–590

    Google Scholar 

  • Joyce PA, McQualter RB, Bernard MJ, Smith GR (1998) Engineering for resistance to SCMV in sugarcane. Acta Hort 461:385–391

    Google Scholar 

  • Joyce P, Kuwahata M, Turner N, Lakshmanan P (2010) Selection system and co-cultivation medium are important determinants of Agrobacterium-mediated transformation of sugarcane. Plant Cell Rep 29:173–183

    PubMed  CAS  Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    PubMed  CAS  Google Scholar 

  • Khan SA, Rashid H, Chaudhary MF, Chaudhry Z, Afroz A (2008) Rapid micropropagation of three elite sugarcane (Saccharum officinarum L.) varieties by shoot tip culture. Afr J Biotechnol 7:2174–2180

    CAS  Google Scholar 

  • Khanna HK, Paul JY, Harding RM, Dickman MB, Dale JL (2007) Inhibition of Agrobacterium-induced cell death by antiapoptotic gene expression leads to very high transformation efficiency of banana. Mol Plant Microbe Interact 20:1048–1054

    PubMed  CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    CAS  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Wang LF, Elliott A, Grof CPI, Smith GR (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep 25:1007–1015

    PubMed  CAS  Google Scholar 

  • Lee TSG (1987) Micropropagation of sugarcane (Saccharum spp.). Plant Cell Tissue Org Cult 10:47–55

    Google Scholar 

  • Lee S-B, Kwon H-B, Kwon S-J, Park S-C, Jeong M-J, Han S-E, Byun M-O, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1–13

    CAS  Google Scholar 

  • Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    PubMed  CAS  Google Scholar 

  • Legaspi JC, Mirkov TE (2000) Evaluation of transgenic sugarcane against stalk borers. Proc Int Soc Sugar Cane Technol 4:68–71

    Google Scholar 

  • Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    CAS  Google Scholar 

  • Liu DW, Oard SV, Oard JH (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2. Plant Sci 165:743–750

    CAS  Google Scholar 

  • Lowe BA, Shiva Prakash N, Way M, Mann MT, Spencer TM, Boddupalli RS (2009) Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 18:831–840

    PubMed  CAS  Google Scholar 

  • Ma H, Albert HH, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells. Aust J Plant Physiol 27:1021–1030

    CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    PubMed  CAS  Google Scholar 

  • Mangwende T, Wang ML, Borth W, Hu J, Moore PH, Mirkov TE, Albert HH (2009) The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology 384:38–50

    PubMed  CAS  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    PubMed  CAS  Google Scholar 

  • McQualter RB, Dookun-Saumtally A (2007) Expression profiling of abiotic-stress inducible genes in sugarcane. Proc Int Soc Sugar Cane Technol 26:878–888

    Google Scholar 

  • McQualter RB, Dale JL, Harding RM, McMahon JA, Smith GR (2004) Production and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genome segment S9-derived synthetic resistance gene. Aust J Agric Res 55:139–145

    CAS  Google Scholar 

  • McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3:29–41

    PubMed  CAS  Google Scholar 

  • Menossi M, Silva-Filho MC, Vincentz M, Van-Sluys MA, Souza GM (2008) Sugarcane functional genomics: gene discovery for agronomic trait development. Int J Plant Genomics 458732. doi:10.1155/2008/458732

  • Miller H (2007) Biotech’s defining moments. Trends Biotechnol 25:56–59

    PubMed  CAS  Google Scholar 

  • Ming R, Moore PH, Wu KK, D’Hont A, Glaszmann JC, Tew TL, Mirkov TE, da Silva J, Jifon J, Rai M, Schnell RJ, Brumbley SM, Lakshmanan P, Comstock JC, Paterson AH (2006) Sugarcane improvement through breeding and biotechnology. In: Janick J (ed) Plant breeding reviews, vol 27, John Wiley & Sons, Inc., pp 15–118

    Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok Filho JC, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    CAS  Google Scholar 

  • Moore PH (2005) Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum. Field Crops Res 92:119–135

    Google Scholar 

  • Moore PH, Osgood RV (1989) Prevention of flowering and increasing sugar yield of sugarcane by application of ethephon (2-chloroethylphosphonic acid). J Plant Growth Regul 8:205–210

    CAS  Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki Y (2006) Regulons involved in osmotic stress-responsive and stress-responsive gene expression in plants. Physiol Plant 126:62–71

    CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    PubMed  CAS  Google Scholar 

  • Nutt KA, Allsopp PC, McGhie TK, Shepherd KM, Joyce PA, Tayoor GO, McQualter RB, Smith GR (1999) Transgenic sugarcane with increased resistance to canegrubs. Proc Aust Soc Sugar Cane Technol 21:171–17630

    Google Scholar 

  • Olivares-Villegas JJ, Berding N, Morgan T, Bennett GD (2010) A support framework for deployment of genetically modified sugarcane: identifying potential risks from sexual reproduction of commercial cultivars. Proc Int Soc Sugar Cane Technol 27:118

    Google Scholar 

  • Oltmanns H, Frame B, Lee L-Y, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of backbone-free, low transgene copy plants by launching T-DNA from the Agrobacterium chromosome. Plant Physiol 152:1158–1166

    PubMed  CAS  Google Scholar 

  • Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    PubMed  CAS  Google Scholar 

  • Parrot DL, Anderson AJ, Carman JG (2002) Agrobacterium induces plant cell death in wheat (Triticum aestivum L.). Physiol Mol Plant Pathol 60:59–69

    Google Scholar 

  • Patade VY, Suprasana P (2008) Radiation induced in vitro mutagenesis for sugarcane improvement. In: Suprasana P (ed) Special issue on biotechnology, Springer India, Sugar Tech 10:14–19

    Google Scholar 

  • Patade VY, Suprasana P, Bapat VA (2008) Gamma irradiation of embryogenic callus cultures and in vitro selection for salt tolerance in sugarcane (Saccharum officinarum L.). Agric Sci (China) 7:101–105

    Google Scholar 

  • Petersen K, Leah R, Knudsen S, Cameron-Mills V (2002) Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance in transgene expression in barley. Plant Mol Biol 49:45–58

    PubMed  CAS  Google Scholar 

  • Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5:162–172

    PubMed  CAS  Google Scholar 

  • Porteus MH (2009) Plant biotechnology: zinc fingers on target. Nature 459:337–338

    PubMed  CAS  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    PubMed  CAS  Google Scholar 

  • Potier BAM, Birch RG (2001) Sugarcane plant promoters to express heterologous nucleic acids. International Patent Publication WO/01/18211 A1

    Google Scholar 

  • Potier BAM, Baburam C, Jacob R, Huckett BI (2008a) Stem-specific promoters from sorghum and maize for use in sugarcane. Proc S Afr Sug Technol Assoc 81:508–512

    Google Scholar 

  • Potier BAM, Snyman SJ, Jacob R, Dheopursad D, Hucket BI (2008b) Strategies for the alleviation of promoter silencing in sugarcane. Proc S Afr Sug Technol Assoc 81:482–485

    Google Scholar 

  • Premachandran MN (2006) Cauliflower gene in sugarcane? Curr Sci 91:750–751

    Google Scholar 

  • Privalle LS, Wright M, Reed J, Hansen G, Dawson J, Dunder EM, Chang Y-F, Powell ML, Meghji M (2000) Phosphomannose isomerase, a novel plant selection system: mode of action and safety assessment. In: Fairbain G, Scoles A (eds) International symposium on biosafety of genetically modified organisms. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 171–178

    Google Scholar 

  • Putterill J (2001) Flowering in time: genes controlling photoperiodic flowering in Arabidopsis. Philos Trans R Soc Lond Biol Sci 356:1761–1767

    CAS  Google Scholar 

  • Rajeswari S, Thirugnanakumar S, Anandan A, Krishnamurthi M (2009) Somaclonal variation in sugarcane through tissue culture and evaluation for quantitative and qualitative traits. Euphytica 168:71–80

    Google Scholar 

  • Ralph J, Akiyama T, Kim H, Lu F, Schatz PF, Marita JM, Ralph SA, Srinivasa Reddy MS, Chen F, Dixon RA (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 28:8843–8853

    Google Scholar 

  • Rathus C, Birch RG (1992) Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci 82:81–89

    CAS  Google Scholar 

  • Rossouw D, Bosch S, Kossmann JM, Botha FC, Groenewald J-H (2007) Down-regulation of neutral invertase activity in sugarcane cell suspension cultures leads to increased sucrose accumulation. Funct Plant Biol 34:490–498

    CAS  Google Scholar 

  • Roy PK, Kabir MH (2007) In vitro mass propagation of sugarcane (Saccharum officinarum L.) var. Isd 32 through shoot tips and folded leaves culture. Biotechnol 6:588–592

    CAS  Google Scholar 

  • Sahrawy M, Avila C, Chueca A, Canovas FM, Lopez-Gorge J (2004) Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphate. J Exp Bot 55:2495–2503

    PubMed  CAS  Google Scholar 

  • Sainz MB (2009) Commercial cellulosic ethanol: the role of plant-expressed enzymes. In Vitro Cell Dev Biol Plant 45:314–329

    CAS  Google Scholar 

  • Sakamato T, Morinaka Y, Ohnishi T, Sunohara H, Fujikota S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka K, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Google Scholar 

  • Salehi H, Ransom CB, Oraby HF, Seddighi Z, Sticklen MB (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J Plant Physiol 162:711–717

    PubMed  CAS  Google Scholar 

  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196

    PubMed  CAS  Google Scholar 

  • Sétamou M, Bernal JS, Legaspi JC, Mirkov TE, Legaspi BC (2002) Evaluation of lectin-expressing transgenic sugarcane against stalk borers (Lepidoptera: Pyralidae): effects on life history parameters. J Econ Entomol 95:469–477

    PubMed  Google Scholar 

  • Shiermeyer A, Shillberg S (2010) Pharmaceuticals. In: Kempken F, Jung C (eds) Genetic modification of plants. Biotechnology in agriculture and forestry, vol 64, Springer-Verlag, Berlin, pp 221–235

    Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu Y-Y, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    PubMed  CAS  Google Scholar 

  • Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:313–320

    Google Scholar 

  • Snyman SJ (2004) Transformation of sugarcane. In: Curtis IS (ed) Transgenic crops of the world – essential protocols. Kluwer Academic Publishers, The Netherlands, pp 103–114

    Google Scholar 

  • Snyman SJ, Meyer GM, Carson D, Botha FC (1996) Establishment of embryogenic callus and transient gene expression in selected sugarcane varieties. S Afr J Bot 62:151–154

    Google Scholar 

  • Snyman SJ, Watt MP, Huckett BI, Botha FC (2000) Direct somatic embryogenesis for rapid, cost effective production of transgenic sugarcane (Saccharum spp. hybrids). Proc S Afr Sugar Technol Assoc 74:186–187

    Google Scholar 

  • Snyman SJ, Meyer GM, Richards JM, Haricharan N, Ramgareeb S, Huckett BI (2006) Refining the application of direct embryogenesis in sugarcane: effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency. Plant Cell Rep 25:1016–1023

    PubMed  CAS  Google Scholar 

  • Spiker S, Thompson WF (1996) Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol 110:15–21

    PubMed  CAS  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17:315–319

    PubMed  CAS  Google Scholar 

  • Sticklen M (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    PubMed  CAS  Google Scholar 

  • Strauch E, Wohlleben W, Pühler A (1988) Cloning of a phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74

    PubMed  CAS  Google Scholar 

  • Taylor GO, Joyce PA, Sedl JM, Smith GR (1999) Laboratory crystallized sugar from genetically engineered sugarcane does not contain transgenic DNA in final product. Proc Austral Soc Sugar Cane Technol 21:502

    Google Scholar 

  • Taylor LE, Dai Z, Decker SR, Brunecky R, Adney WS, Ding S-Y, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 268:413–424

    Google Scholar 

  • Thole V, Worland B, Snape JW, Vain P (2007) The pCLEAN dual binary system for Agrobacterium-mediated plant transformation. Plant Physiol 145:1211–1219

    PubMed  CAS  Google Scholar 

  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523

    PubMed  CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 45:442–445

    Google Scholar 

  • Trujillo LE, Sotolongo M, Menéndez C, Ochogavía ME, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma BPHJ, Vera P, Hernández L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. Plant Cell Physiol 49:512–525

    PubMed  CAS  Google Scholar 

  • Ulian E (2006) Genetic manipulation of sugarcane. In: Published abstracts of the fifth molecular biology workshop of the international society of sugar cane technologists, Réduit, Mauritius, 3–4 April 2006

    Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes unlock the future. Curr Opin Biotechnol 17:113–122

    PubMed  CAS  Google Scholar 

  • van der Merwe MJ, Groenewald JH, Botha FC (2003) Isolation and evaluation of a developmentally regulated sugarcane promoter. Proc S Afr Sugar Cane Technol 77:146–169

    Google Scholar 

  • van der Merwe MJ, Groenewald JH, Stitt M, Kossmann J, Botha FC (2010) Down-regulation of pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta 231:595–608

    PubMed  Google Scholar 

  • Veena JH, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35:219–236

    PubMed  CAS  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Knight DP, Roberts SE, Robinson SP (2005a) Overexpression of polyphenol oxidase in transgenic sugarcane results in darker juice and raw sugar. Crop Sci 45:354–362

    CAS  Google Scholar 

  • Vickers JE, Grof CPL, Bonnett GD, Jackson PA, Morgan TE (2005b) Effects of tissue culture, biolistic transformation and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Aust J Agric Res 56:57–68

    CAS  Google Scholar 

  • Waldron J, Reyes MEC, Hamerli D, Birch RG, Carroll BJ (2001) Tomato DNA sequences for resisting transgene silencing in sugarcane. Proc Int Soc Sug Technol 24:665–666

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005a) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14:167–178

    PubMed  Google Scholar 

  • Wang ZZ, Zhang SZ, Yang BP, Li YR (2005b) Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech 7:49–54

    CAS  Google Scholar 

  • Wang M, Borth W, Mangwende T, Mirkov TE, Hu J, Moore PH, Albert HH (2006) SCYLV P0: function and potential use to control transgene silencing in sugarcane. In: Published abstracts of the tropical crop biotechnology conference, Cairns, Australia, 16–19 August 2006

    Google Scholar 

  • Wang M, Mangwende T, Borth W, Mirkov TE, HU J, Moore PH, Albert HH (2007) Constitutive expression of viral suppressors of PTGS in sugarcane. In: Published abstracts of the plant and animal genome 15th conference. San Diego, California, USA, W193, 13–17 January 2007

    Google Scholar 

  • Warzecha H, Henning A (2010) Plastid transformation. In: Kempken F, Jung C (eds) Genetic modification of plants, Biotechnology in agriculture and forestry, vol 64. Springer-Verlag, Berlin, pp 23–37

    Google Scholar 

  • Wei H, Albert HH, Moore PH (1999) Differential expression of sugarcane polyubiquitin genes and isolation of promoters from two highly-expressed members of the gene family. J Plant Physiol 155:513–519

    CAS  Google Scholar 

  • Wei H, Wang M-L, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    PubMed  CAS  Google Scholar 

  • Weng LX, Deng H, Xu JL, Wang LH, Jiang Z, Zhang HB, Li Q, Zhang LH (2006) Regeneration of sugarcane elite breeding lines and engineering of stem borer resistance. Pest Manag Sci 62:178–187

    PubMed  CAS  Google Scholar 

  • Willmitzer L (1999) Plant biotechnology: output traits the second generation of plant biotechnology products is gaining momentum. Curr Opin Biotech 10:161–162

    CAS  Google Scholar 

  • Wu L, Birch R (2005) Characterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Appl Environ Microbiol 71:1581–1590

    PubMed  CAS  Google Scholar 

  • Wu L, Birch R (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    PubMed  CAS  Google Scholar 

  • Xing A, Zhang Z, Sato S, Staswick P, Clemente T (2000) The use of the two T-DNA binary system to drive marker-free transgenic soybeans. In Vitro Cell Dev Biol Plant 36:456–463

    CAS  Google Scholar 

  • Yang M, Bower R, Burow MD, Paterson AH, Mirkov TE (2003) A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots. Crop Sci 43:1805–1813

    CAS  Google Scholar 

  • Yu W, Lamb JC, Han F, Birchler JA (2006) Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci USA 103:17331–17336

    PubMed  CAS  Google Scholar 

  • Yu W, Han F, Birchler JA (2007) Engineered minichromosomes in plants. Curr Opin Biotechnol 18:425–431

    PubMed  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    PubMed  CAS  Google Scholar 

  • Zhang D, Li X, Zhang LH (2002) Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability. Appl Environ Microbiol 68:2676–2682

    PubMed  CAS  Google Scholar 

  • Zhang D, Li N, Swaminathan K, Zhang LH (2003) A motif rich in charged residues determines product specificity in isomaltulose synthase. FEBS Lett 534:151–155

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    PubMed  CAS  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L). J Integr Plant Biol 48:453–459

    CAS  Google Scholar 

  • Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y (2008) Contrasting effects of Hc-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato as-permy cucumovirus on the accumulation of siRNAs. Virology 374:351–360

    PubMed  CAS  Google Scholar 

  • Zhangsun D, Luo S, Chen R, Tang K (2007) Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia 62:386–393

    CAS  Google Scholar 

  • Zhao Y, Qian Q, Wang HZ, Huang DN (2007) Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA. In Vitro Cell Dev Biol Plant 43:328–334

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Getu Beyene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beyene, G., Curtis, I.S., Damaj, M.B., Buenrostro-Nava, M.T., Mirkov, T.E. (2013). Genetic Engineering of Saccharum . In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_11

Download citation

Publish with us

Policies and ethics