Skip to main content

Bayesian vs. Frequentist Shrinkage in Multivariate Normal Problems

  • Chapter
  • First Online:
  • 3642 Accesses

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

This chapter is dedicated to the comparison of Bayes and frequentist estimators of the mean θ of a multivariate normal distribution in high dimensions. For dimension k ≥ 3, the James-Stein estimator specified in (2.15) (and its more general form to be specified below) is usually the frequentist estimator of choice. The estimator is known to improve uniformly upon the sample mean vector X̅ as an estimator of θ when k ≥ 3, and while it is also known that it is not itself admissible, extant alternative estimators with smaller risk functions are known to offer only very slight improvement. For this and other reasons, the James-Stein estimator is widely used among estimators which exploit the notion of shrinkage. In the results described in this chapter, I will use the form of the James-Stein estimator which shrinks X̅toward a (possibly nonzero) distinguished point. This serves the purpose of placing the James-Stein estimator and the Bayes estimator of θ with respect to a standard conjugate prior distribution in comparable frameworks, since the latter also shrinks X̅ toward a distinguished point. It is interesting to note that the James-Stein estimator has a certain Bayesian flavor that goes beyond the empirical Bayes character highlighted in the writings of Efron and Morris (1973, etc.) in that the act of shrinking toward a particular parameter vector suggests that the statistician using this estimator is exercising some form of introspection in determining a good “prior guess” at θ. The Bayesian of course goes further, specifying, a priori, the weight he wishes to place on the prior guess. What results in the latter case is an alternative form of shrinkage, one that leads to a linear combination of X̅ and the prior guess, with weights influenced by the prior distribution rather than by the observed data. Since X̅ is a sufficient statistic for the mean of a multivariate normal distribution with known variance-covariance matrix S, I will henceforth, without loss of generality, take the sample size n to be 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Samaniego .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Samaniego, F.J. (2010). Bayesian vs. Frequentist Shrinkage in Multivariate Normal Problems. In: A Comparison of the Bayesian and Frequentist Approaches to Estimation. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5941-6_7

Download citation

Publish with us

Policies and ethics