Skip to main content

Magnetic Resonance Spectroscopy of the Fetal Brain

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

Fetal 1H-MRS is a promising non-invasive technique for assessing metabolic integrity in the developing brain, and has the potential to open a critical presently unavailable window for antenatal cerebral surveillance in the high-risk pregnancy. However, ongoing work is needed to improve the technical success of this emerging technique so as to increase and optimize its utility in the clinical setting. To date in vivo studies have provided important normative data for second and third trimester fetal brain metabolic concentrations in healthy fetuses. Additional studies are needed to elucidate the complex role of these metabolites throughout gestation. This in turn will lay the foundation for the development of clinically meaningful 1H-MRS biomarkers for the accurate assessment of fetal health and well-being. Finally, although a number of studies have performed in vivo spectroscopy studies, the long-term prognostic significance of these acute metabolic findings warrant further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heerschap A, van den Berg PP. Proton magnetic resonance spectroscopy of human fetal brain. Am J Obstet Gynecol. 1994;170:1150–1.

    PubMed  CAS  Google Scholar 

  2. Girard N, Confort Gouny S, Viola A, et al. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med. 2006;56:768–75.

    Article  PubMed  Google Scholar 

  3. Limperopoulos C, Tworetzky W, McElhinney DB, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121:26–33.

    Article  PubMed  CAS  Google Scholar 

  4. Heerschap A, Kok RD, van der Berg PP. Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv Syst. 2003;19:418–21.

    Article  PubMed  Google Scholar 

  5. Story L, Damodaram MS, Allsop JM, et al. Proton magnetic resonance spectroscopy in the fetus. Eur J Obstet Gynecol. 2011;158:3–8.

    Article  Google Scholar 

  6. Roelants-van Rijn AM, Groenendaal F, Stoutenbeek P, van der Grond J. Lactate in the foetal brain: detection and implications. Acta Paediatr. 2004;93:937–40.

    Article  PubMed  Google Scholar 

  7. Kreis R, Ernst T, Ross BD. Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993;30:424–37.

    Article  PubMed  CAS  Google Scholar 

  8. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48:949–58.

    Article  PubMed  CAS  Google Scholar 

  9. Limperopoulos C. Disorders of the fetal circulation and the fetal brain. Clin Perinatol. 2009;36:561–77.

    Article  PubMed  Google Scholar 

  10. Kok RD, van den Berg PP, van den Bergh AJ, Nijland R, Heerschap A. Maturation of the human fetal brain as observed by 1H MR spectroscopy. Magn Reson Med. 2002;48:611–6.

    Article  PubMed  CAS  Google Scholar 

  11. Urenjak J, Willliams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59:55–61.

    Article  PubMed  CAS  Google Scholar 

  12. Huppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res. 1995;37:145–50.

    Article  PubMed  CAS  Google Scholar 

  13. Roelants-van Rijn AM, van der Grond J, Stigter RH, de Vries LS, Groenendaal F. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res. 2004;56:285–90.

    Article  PubMed  Google Scholar 

  14. Fenton BW, Lin CS, Macedonia C, Schellinger D, Ascher S. The fetus at term: In utero volume-selected proton MR spectroscopy with a breath-hold technique- A feasibility study. Radiology. 2001;219:563–6.

    PubMed  CAS  Google Scholar 

  15. Cady E, Penrice J, Arness P, et al. Lactate, N-acetyl-aspartate, choline and creatine concentrations and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med. 1996;36:878–86.

    Article  PubMed  CAS  Google Scholar 

  16. Huppi PS, Warfield S, Kikinis R, et al. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Am Neurol. 1998;43:224–35.

    Article  CAS  Google Scholar 

  17. Bhakoo KK, Pearce D. In vitro expression of N-acetyl-aspartate by oligodendrocytes: Implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem. 2000;74:254–62.

    Article  PubMed  CAS  Google Scholar 

  18. Kreis R, Ernst T, Ross B. Absolute quantification of water and metabolites in the human brain. Part II. Metabolite concentrations. J Magn Reson. 1993;103:9–19.

    Google Scholar 

  19. Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.

    Article  PubMed  CAS  Google Scholar 

  20. Beemster P, Groenen P, Steegers-Theunissen RPM. The involvement of inositol in reproduction. Nutr Rev. 2002;60:80–8.

    Article  PubMed  Google Scholar 

  21. Kato N. Dependence of long-term depression of postsynaptic metabotropic glutamate receptors in visual cortex. Proc Natl Acad Sci USA. 1993;90:3650–4.

    Article  PubMed  CAS  Google Scholar 

  22. Novak JE, Turner RS, Agranoff BW, Fisher SK. Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J Neurochem. 1999;72:1431–40.

    Article  PubMed  CAS  Google Scholar 

  23. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.

    Article  PubMed  CAS  Google Scholar 

  24. Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.

    Article  PubMed  CAS  Google Scholar 

  25. Greene ND, Copp AJ. Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med. 1997;3:60–6.

    Article  PubMed  CAS  Google Scholar 

  26. Brighina E, Bresolin N, Pardi G, Rango M. Human fetal brain chemistry as detected by proton magnetic resonance spectroscopy. Pediatr Neurol. 2008;40(5):327–42.

    Article  Google Scholar 

  27. Barker P, Breiter S, Soher B, et al. Quantitative proton spectroscopy of canine brain: In vivo and in vitro correlations. Magn Reson Med. 1994;32:157–63.

    Article  PubMed  CAS  Google Scholar 

  28. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987;22:487–97.

    Article  PubMed  CAS  Google Scholar 

  29. Stockler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res. 1994;36:409–13.

    Article  PubMed  CAS  Google Scholar 

  30. Bizzi A, Bugiani M, Salomons GS, et al. X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol. 2002;52:227–31.

    Article  PubMed  CAS  Google Scholar 

  31. Rutherford JM, Moody A, Crawshaw S, Rubin PC. Magnetic resonance spectroscopy in pre-eclampsia: evidence of cerebral ischaemia. Br J Obstet Gynaecol. 2003;110:416–23.

    Article  Google Scholar 

  32. Fisher MC, Zeisel SH, Mar MH, Sadler TW. Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 2002;16:619–21.

    PubMed  CAS  Google Scholar 

  33. Zeisel SH, Niculescu MD. Perinatal choline influences brain structure and function. Nutr Rev. 2004;64:197–203.

    Article  Google Scholar 

  34. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993;13:981–9.

    PubMed  CAS  Google Scholar 

  35. Jacobs MA, Horska A, van Zijil PC, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brainstem. Magn Reson Med. 2001;46:699–705.

    Article  PubMed  CAS  Google Scholar 

  36. Magistretti FG, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science. 1999;283:496–7.

    Article  PubMed  CAS  Google Scholar 

  37. Hutternlocher PR, de Courten C, Garey LJ, Van der Loos H. Synaptogenesis in human visual cortex-evidence for synapse ­elimination during normal development. Neurosci Lett. 1982;33:247–52.

    Article  Google Scholar 

  38. Gallo V, Ghiani CA. Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol Sci. 2000;21:252–8.

    Article  PubMed  CAS  Google Scholar 

  39. Gallo V, Zhou JM, McBain CJ, Wright PW, Knutson PL, Amstrong RC. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J Neurosci. 1996;16:2659–70.

    PubMed  CAS  Google Scholar 

  40. Yuan X, Eisen AM, McBain CJ, Gallo V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development. 1998;125:2901–14.

    PubMed  CAS  Google Scholar 

  41. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extra-cellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;4:1369–74.

    Article  Google Scholar 

  42. Hagberg H. Hypoxic-ischemic damage in the neonatal brain: excitatory amino acids. Dev Pharmacol Ther. 2002;18:139–44.

    Google Scholar 

  43. Follet P, Deng W, Dai W, et al. Topiramate protection in immature brain injury. J Neurosci. 2004;24:4412–20.

    Article  Google Scholar 

  44. Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics. 2005;116:221–5.

    Article  PubMed  Google Scholar 

  45. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet. 2009;8:110–24.

    Article  Google Scholar 

  46. Itoh T, Beesley J, Itoh A, et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem. 2002;81:390–402.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg PA, Dai W, Gan X, et al. Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res. 2003;71:237–45.

    Article  PubMed  CAS  Google Scholar 

  48. Girard N, Fogliarini C, Viola A, et al. MRS of normal and impaired fetal brain development. Eur J Radiol. 2006;57:217–25.

    Article  PubMed  Google Scholar 

  49. Vannucci RC, Vannucci SJ. Glucose metabolism in the developing brain. Semin Perinatol. 2000;24:107–15.

    Article  PubMed  CAS  Google Scholar 

  50. Khalan S, Parimi P. Gluconeogenesis in the fetus and neonate. Semin Perinatol. 2000;24:94–106.

    Article  Google Scholar 

  51. Zarifi MK, Astrakas LG, Poussaint TY, Plessis Ad A, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002;225:859–70.

    Article  PubMed  CAS  Google Scholar 

  52. Miller SP, Newton N, Ferriero DM, et al. Predictors of 30-month outcome after perinatal depression: role of proton MRS and socioeconomics factors. Pediatr Res. 2002;52:71–7.

    Article  PubMed  Google Scholar 

  53. Loose JM, Miller SL, Supramanian VG, et al. Hypoxia induced activin secretion by the fetoplacental unit: differential responses related to gestation. BJOG. 2004;111:1346–52.

    Article  PubMed  CAS  Google Scholar 

  54. van Cappellen van Walsum AM, Heerschap A, Nijhuis JG, Oeseburg B, Jongsma HW. Proton magnetic resonance spectroscopy of fetal lamb brain during hypoxia. Am J Obstet Gynecol. 1998;179:756–7.

    Article  PubMed  CAS  Google Scholar 

  55. Dixon JC, Cady EB, Priest AN, Thornton JS, Peebles DM. Growth restriction and the cerebral metabolic response to acute hypoxia of chick embryos in-ovo: a proton magnetic resonance spectroscopy study. Brain Res Dev Brain Res. 2005;160:203–10.

    Article  PubMed  CAS  Google Scholar 

  56. Robinson JN, Cleary-Goldman J, Arias-Mendoza F, et al. Detection of fetal lactate with two-dimensional-localized proton magnetic resonance spectroscopy. Obstet Gynecol. 2004;104:1208–10.

    Article  PubMed  Google Scholar 

  57. Azpurua HB, Alvarado A, Mayobre F, Salom T, Copel JA, Guevara-Zuloaga F. Metabolic assessment of the brain using proton magnetic resonance spectroscopy in a growth-restricted human fetus: case report. Am J Perinatol. 2008;25:305–9.

    Article  PubMed  Google Scholar 

  58. Charles-Edwards GD, Jan W, To M, Maxwell D, Keevil SF, Robinson R. Non-invasive detection and quantification of human foetal brain lactate in utero by magnetic resonance spectroscopy. Prenat Diagn. 2010;30:260–6.

    PubMed  CAS  Google Scholar 

  59. Leth H, Toft P, Pryds O, Peitersen B, Lou H, Henriksen O. Brain lactate in preterm and growth-retarded neonates. Acta Paediatr. 1995;82:495–9.

    Article  Google Scholar 

  60. Cady E. Metabolite concentrations and relaxation in perinatal cerebral hypoxic-ischemic injury. Neurochem Res. 1996;21:1043–52.

    Article  PubMed  CAS  Google Scholar 

  61. Sanz-Cortes M, Figueras F, Bargallo N, Padilla N, Amat-Roldan I, Gratacos E. Abnormal brain microstructure and metabolism in small-for-gestational-age term fetuses with normal umbilical artery Doppler. Ultrasound Obstet Gynecol. 2010;36:159–65.

    Article  PubMed  CAS  Google Scholar 

  62. Robertson NJ, Lewis RH, Cowan FM, et al. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res. 2001;50:692–700.

    Article  PubMed  CAS  Google Scholar 

  63. Kok RD, Steegers-Theunissen RPM, Eskes TKA, Heerschap A, van den Berg PP. Decreased relative brain tissue levels of inositol in fetal hydrocephalus. Am J Obstet Gynecol. 2003;188(4):978–80.

    Article  PubMed  CAS  Google Scholar 

  64. Bluml S, McComb JG, Ross BD. Differentiation between cortical atrophy and hydrocephalus using 1H MRS. Magn Reson Med. 1997;37:395–403.

    Article  PubMed  CAS  Google Scholar 

  65. Wolfberg A, Robinson JN, Mulkern R, Rybicki F, Du Plessis AJ. Identification of fetal cerebral lactate using magnetic resonance spectroscopy. Am J Obstet Gynecol. 2007;196:e-9–11.

    Article  Google Scholar 

  66. Robinson JN, Norwitz ER, Mulkern R, Brown SA, Rybicki F, Tempany CMC. Prenatal diagnosis of pyruvate dehydrogenase deficiency using magnetic resonance imaging. Prenat Diagn. 2001;21:1053–6.

    Article  PubMed  CAS  Google Scholar 

  67. Brown RM, Dahl HHM, Brown GK. X-chromosome localization of the functional gene for the El α (alpha) subunit of the human pyruvate dehydrogenase complex. Genomics. 1989;41:74–81.

    Google Scholar 

  68. Brown GK, Otero LJ, Le Gris M, Brown RM. Pyruvate dehydrogenase deficiency. J Med Genet. 1994;31:875–9.

    Article  PubMed  CAS  Google Scholar 

  69. Cross JH, Connelly A, Gadian DG, et al. Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;10:276–83.

    Article  PubMed  CAS  Google Scholar 

  70. Shevell MI, Matthews PM, Scriver CR, et al. Cerebral dysgenesis lactic academia: an MRI/MRS phenotype associated with pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;11:224–9.

    Article  PubMed  CAS  Google Scholar 

  71. Hernandez MJ, Vannucci RC, Salcedo A, Brennan RW. Cerebral blood flow and metabolism during hypoglycemia in newborn dogs. J Neurochem. 1980;35:622–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Limperopoulos Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Limperopoulos, C. (2013). Magnetic Resonance Spectroscopy of the Fetal Brain. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics