Skip to main content

Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine

  • Chapter
  • First Online:
  • 3158 Accesses

Abstract

In previous chapters, we described various characteristics and production of radionuclides, preparation of different radiopharmaceuticals using various radionuclides, and their quality control. In the present chapter we shall describe clinical applications of these radiopharmaceuticals in the diagnosis of various diseases in humans. The discussion is primarily divided into sections on different organs. In each section the anatomic structure and physiologic function of the organ are briefly described and appropriate nuclear medicine tests are discussed along with their clinical usefulness, particularly with respect to the radiopharmaceuticals used, their pharmacologic aspect, the mechanism of their localization, and diagnosis of various diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Suggested Reading

  • Anthony CP, Thibodeau GA. Textbook of Anatomy and Physiology. St. Louis: Mosby; 1979.

    Google Scholar 

  • Arnold RW, Subramanian G, McAfee JG, et al. Comparison of 99mTc complexes for renal imaging. J Nucl Med. 1975; 16:357.

    PubMed  CAS  Google Scholar 

  • Atkins HL, Budinger TF, Lebowitz E, et al. Thallium-201 for medical use. Part 3: Human distribution and physical imaging properties. J Nucl Med. 1977; 18:133.

    PubMed  CAS  Google Scholar 

  • Barrio JR, Huang SC, Melega WP, et al. 6-[18F]fluoro-L-dopa probes dopamine turnover rates in central dopaminergic structures. J Neurosci Res. 1990; 27:487.

    Article  PubMed  CAS  Google Scholar 

  • Berman DS, Kiat HS, Van Train KF, et al. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of imaging protocols. J Nucl Med. 1994; 35:681.

    PubMed  CAS  Google Scholar 

  • Cook GJR, Maisey MN, Britton KE, Chengazi V, eds. Clinical Nuclear Medicine. 4th ed. London: Hodder Arnold; 2006.

    Google Scholar 

  • Delbeke D, Martin WH, Patton JA, et al., eds. Practical FDG Imaging. A Teaching File. New York: Springer; 2002.

    Google Scholar 

  • Dienel GA, Cruz NF, Sokoloff F. Metabolites of 2-deoxy-[14C]-glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab. 1993; 13:315.

    Article  PubMed  CAS  Google Scholar 

  • Dilsizian V, Rocco TP, Freedman NMT, et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium and stress-redistribution imaging. N Engl J Med. 1990; 323:141.

    Article  PubMed  CAS  Google Scholar 

  • Dilsizian V, Bacharach SL, Beanlands RS et al. PET myocardial perfusion and metabolic clinical imaging. J Nucl cardiol. 2009; 16:651.

    Google Scholar 

  • Early PJ, Sodee DB, eds. Principles and Practice of Nuclear Medicine. 2nd ed. St. Louis: Mosby; 1995.

    Google Scholar 

  • Gould KL, Yoshida K, Hess MJ, et al. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med. 1991; 32:1.

    PubMed  CAS  Google Scholar 

  • Hauser W, Atkins HL, Nelson KG, et al. Technetium-99m-DTPA: a new radiopharmaceutical for brain and kidney imaging. Radiology. 1970; 94:679.

    PubMed  CAS  Google Scholar 

  • Henkin RE, Bara D, Dillehay GL, et al., eds. Nuclear Medicine. 2nd ed. Philadelphia: Mosby-Elsevier; 2006.

    Google Scholar 

  • Higley B, Smith FW, Smith T, et al. Technetium-99m-1,2-bis[bis(2-ethoxyethyl)-phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med. 1993; 34:30.

    PubMed  CAS  Google Scholar 

  • Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial Tl-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988; 12(6):1456.

    Article  PubMed  CAS  Google Scholar 

  • Kuhl DE, Barrio JR, Huang SC, et al. Quantifying local cerebral blood flow by N-isopropyl-p-123I-iodoamphetamine (IMP) tomography. J Nucl Med. 1982; 236:196.

    Google Scholar 

  • Leveille J, Demonceau G, DeRoo M, et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 2: Biodistribution and brain imaging in humans. J Nucl Med. 1989; 30:1902.

    PubMed  CAS  Google Scholar 

  • McAfee JG, Grossman ZD, Gagne G, et al. Comparison of renal extraction efficiencies for radioactive agents in the normal dog. J Nucl Med. 1981; 22:333.

    PubMed  CAS  Google Scholar 

  • Mejia AA, Nakamura T, Masatoshi I, et al. Estimation of absorbed dose in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med. 1991; 32:699.

    PubMed  CAS  Google Scholar 

  • Mettler FA Jr, Guiberteau MJ. Essentials of Nuclear Medicine Imaging. 5th ed. Philadelphia: Saunders; 2006.

    Google Scholar 

  • Ell PJ, Gambhir SS, Nuclear Medicine in Clinical Diagnosis and Treatment. 3rd ed. Edinburgh: Churchill Livingstone; 2004.

    Google Scholar 

  • Narra RK, Nunn AD, Kuczynski BL, et al. A neutral technetium-99m complex for myocardial imaging. J Nucl Med. 1989; 30:1830.

    PubMed  CAS  Google Scholar 

  • Phelps ME, Hoffman EJ, Selin C, et al. Investigation of F-18-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med. 1978; 19:1311.

    PubMed  CAS  Google Scholar 

  • Ruhlmann J, Oehr P, Biersack HJ, eds. PET in Oncology. Basics and Clinical Applications. Heidelberg: Springer; 1999.

    Google Scholar 

  • Saha GB, Go RT, MacIntyre WJ, et al. Use of 82Sr/82Rb generator in clinical PET studies. Nucl Med Biol. 1990; 17:763.

    CAS  Google Scholar 

  • Saha GB, MacIntyre WJ, Brunken RC, et al. Present assessment of myocardial viability by nuclear imaging. Semin Nucl Med. 1996; 26:315.

    Article  PubMed  CAS  Google Scholar 

  • Sandler MP, Coleman RE, Walkers FJT, et al., eds. Diagnostic Nuclear Medicine. 4th ed. Baltimore: Lippincott; 2003.

    Google Scholar 

  • Sapirstein LA, Vigt DG, Mandel MJ, et al. Volumes of distribution and clearances of intravenously injected creatinine in the dog. Am J Physiol. 1955; 181:330.

    PubMed  CAS  Google Scholar 

  • Schelbert HR, Phelps ME, Huang SC, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981; 63:1259.

    Article  PubMed  CAS  Google Scholar 

  • Sharp PF, Smith FW, Gemmell HG, et al. Technetium-99m HMPAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. J Nucl Med. 1986; 27:171.

    PubMed  CAS  Google Scholar 

  • Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man. J Nucl Med. 1987; 28:1625.

    PubMed  CAS  Google Scholar 

  • Skehan SJ, White JF, Evans JW, et al. Mechanism of accumulation of 99mTc-sulesomab in inflammation. J Nucl Med. 2003; 44:11.

    PubMed  CAS  Google Scholar 

  • Subramanian G, McAfee JG, Blair RJ, et al. Technetium 99m methylene diphosphonate – a superior agent for skeletal imaging; comparison with other technetium complexes. J Nucl Med. 1975; 16:744.

    PubMed  CAS  Google Scholar 

  • Taylor A Jr, Eshima D, Christian PE, et al. Technetium-99m kit formulation; preliminary results in normal volunteers and patients with renal failure. J Nucl Med. 1988; 29:616.

    PubMed  Google Scholar 

  • Taylor A Jr, Eshima D, Fritzberg AR, et al. Comparison of iodine-131 OIH and technetium-99m MAG3 renal imaging in volunteers. J Nucl Med. 1986; 27:795.

    PubMed  Google Scholar 

  • Vallabhajosula S, Zimmerman RE, Pickard M, et al. Technetium-99m ECD: a new brain imaging agent. In vivo kinetics and biodistribution studies in normal human studies. J Nucl Med. 1989; 30:599.

    PubMed  CAS  Google Scholar 

  • Virkamaki A, Rissanen E, Hamalainen S. Incorporation of [3-sup3H]glucose and 2-[1-sup14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: Implications for the quantitation of tissue glucose uptake. Diabetes. 1997; 46:1106.

    Article  PubMed  CAS  Google Scholar 

  • Wackers FJT, Berman DS, Maddahi J, et al. Technetium-99m hexakis 2-methoxy-isobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med. 1989; 30:301.

    PubMed  CAS  Google Scholar 

  • Wagner HN, Jr, Szabo Z, Buchanan JW. Principles of Nuclear Medicine. 2nd ed. Philadelphia: Saunders; 1995.

    Google Scholar 

  • Weiner RE. The mechanism of 67Ga localization in malignant disease. Nucl Med Biol. 1996; 23:745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saha, G.B. (2010). Diagnostic Uses of Radiopharmaceuticals in Nuclear Medicine. In: Fundamentals of Nuclear Pharmacy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5860-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5860-0_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5859-4

  • Online ISBN: 978-1-4419-5860-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics