Skip to main content

Disease Classification Using Molecular Signatures

  • Chapter
  • First Online:
Scleroderma

Abstract

Clinical presentation in patients with systemic sclerosis (SSc) is heterogeneous in terms of organ involvement and disease progression. Difficulty measuring this clinical heterogeneity has hindered the understanding of pathogenesis and development of effective treatments. Genome-wide profiling of SSc skin has measured this heterogeneity and shown that multiple, distinct gene expression subsets can be identified in SSc patients. Microarray analysis of skin provides more robust signatures than found in biopsy-derived fibroblasts and these signatures are remarkably consistent between lesional and non-lesional skin samples, indicative of the systemic nature of the disease. In addition to accurately permitting a molecular stratification of the well-described clinical subsets of limited and diffuse cutaneous SSc, gene expression studies of patients with diffuse scleroderma (dSSc) show reproducible, disease-specific gene expression indicating subsets of patients based on different patterns of gene expression. Notably, disease-specific gene expression points to specific pathways in SSc pathogenesis. Activation of these pathways appears to be associated with disease subsets, implicating different pathophysiological processes underlying skin pathology in different patient subsets. Targeted analysis of the level of expression of IFN- and TGF-β-responsive genes in the skin correlates strongly with the modified Rodnan skin score (mRSS) providing another tool for clinical management. Gene expression in peripheral blood and lung from SSc patients give further insights into the systemic response driving SSc pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Barnett AJ, Miller MH, Littlejohn GO. A survival study of patients with scleroderma diagnosed over 30 years (1953–1983): the value of a simple cutaneous classification in the early stages of the disease. J Rheumatol. 1988;15(2):276–83.

    PubMed  CAS  Google Scholar 

  2. LeRoy EC, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15(2):202–5.

    PubMed  CAS  Google Scholar 

  3. Black CM, et al. HLA antigens, autoantibodies and clinical subsets in scleroderma. Br J Rheumatol. 1984;23(4):267–71.

    Article  PubMed  CAS  Google Scholar 

  4. Bolster MB, Silver RM. Lung disease in systemic sclerosis (scleroderma). Baillieres Clin Rheumatol. 1993;7(1):79–97.

    Article  PubMed  CAS  Google Scholar 

  5. Akesson A, Wollheim FA. Organ manifestations in 100 patients with progressive systemic sclerosis: a comparison between the CREST syndrome and diffuse scleroderma. Br J Rheumatol. 1989;28(4):281–6.

    Article  PubMed  CAS  Google Scholar 

  6. Merkel PA, et al. Validity, reliability, and feasibility of durometer measurements of scleroderma skin disease in a multicenter treatment trial. Arthritis Rheum. 2008;59(5):699–705.

    Article  PubMed  Google Scholar 

  7. Rodnan GP, Lipinski E, Luksick J. Skin thickness and collagen content in progressive systemic sclerosis and localized scleroderma. Arthritis Rheum. 1979;22(2):130–40.

    Article  PubMed  CAS  Google Scholar 

  8. Clements P, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22(7):1281–5.

    PubMed  CAS  Google Scholar 

  9. Furst DE, et al. The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J Rheumatol. 1998;25(1):84–8.

    PubMed  CAS  Google Scholar 

  10. Clements PJ, et al. Skin thickness score as a predictor and correlate of outcome in systemic sclerosis: high-dose versus low-dose penicillamine trial. Arthritis Rheum. 2000;43(11):2445–54.

    Article  PubMed  CAS  Google Scholar 

  11. Steen VD, Medsger Jr TA. Improvement in skin thickening in systemic sclerosis associated with improved survival. Arthritis Rheum. 2001;44(12):2828–35.

    Article  PubMed  CAS  Google Scholar 

  12. Verrecchia F, et al. Skin involvement in scleroderma–where histological and clinical scores meet. Rheumatology (Oxford). 2007;46(5):833–41.

    Article  CAS  Google Scholar 

  13. Steen VD. Autoantibodies in systemic sclerosis. Semin Arthritis Rheum. 2005;35(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  14. Medsger TA. In: Clements PJ, Furst DE, editors. Classification, prognosis, in systemic sclerosis. Baltimore: Williams & Wilkins; 2004. p. 17–28.

    Google Scholar 

  15. Seibold JR. In: Harris ED, editor. Kelley’s textbook of rheumatology. Philadelphia: Elsevier & Saunders, scleroderma 2005;79 p. 1279–1308.

    Google Scholar 

  16. Hildebrandt S, et al. A long-term longitudinal isotypic study of anti-topoisomerase I autoantibodies. Rheumatol Int. 1993;12(6):231–4.

    Article  PubMed  CAS  Google Scholar 

  17. Dick T, et al. Coexistence of antitopoisomerase I and anticentromere antibodies in patients with systemic sclerosis. Ann Rheum Dis. 2002;61(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  18. Grassegger A, et al. Autoantibodies in systemic sclerosis (scleroderma): clues for clinical evaluation, prognosis and pathogenesis. Wien Med Wochenschr. 2008;158(1–2):19–28.

    Article  PubMed  Google Scholar 

  19. Koenig M, Dieude M, Senecal JL. Predictive value of antinuclear autoantibodies: the lessons of the systemic sclerosis autoantibodies. Autoimmun Rev. 2008;7(8):588–93.

    Article  PubMed  CAS  Google Scholar 

  20. Scussel-Lonzetti L, et al. Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore). 2002;81(2):154–67.

    Article  Google Scholar 

  21. Maricq HR, Valter I. A working classification of scleroderma spectrum disorders: a proposal and the results of testing on a sample of patients. Clin Exp Rheumatol. 2004;22(3 Suppl 33):S5–13.

    PubMed  Google Scholar 

  22. Ferri C, et al. Systemic sclerosis: demographic, clinical, and serologic features and survival in 1,012 Italian patients. Medicine (Baltimore). 2002;81(2):139–53.

    Article  Google Scholar 

  23. Barnett AJ, Miller M, Littlejohn GO. The diagnosis and classification of scleroderma (systemic sclerosis). Postgrad Med J. 1988;64(748):121–5.

    Article  PubMed  CAS  Google Scholar 

  24. Medsger Jr TA, et al. A disease severity scale for systemic sclerosis: development and testing. J Rheumatol. 1999;26(10):2159–67.

    PubMed  Google Scholar 

  25. Steen VD, Medsger Jr TA. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum. 2000;43(11):2437–44.

    Article  PubMed  CAS  Google Scholar 

  26. Shand L, et al. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: application of a latent linear trajectory model. Arthritis Rheum. 2007;56(7):2422–31.

    Article  PubMed  Google Scholar 

  27. Perera A, et al. Clinical subsets, skin thickness progression rate, and serum antibody levels in systemic sclerosis patients with anti-topoisomerase I antibody. Arthritis Rheum. 2007;56(8):2740–6.

    Article  PubMed  Google Scholar 

  28. Perou CM, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  PubMed  CAS  Google Scholar 

  29. Ross DT, et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet. 2000;24(3):227–35.

    Article  PubMed  CAS  Google Scholar 

  30. Shen-Orr SS, et al. Cell type-specific gene expression differences in complex tissues. Nat Methods. 2010;7(4):287–9.

    Article  PubMed  CAS  Google Scholar 

  31. Milano A, et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS One. 2008;3(7):e2696.

    Article  PubMed  Google Scholar 

  32. Gardner H, et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 2006;54(6):1961–73.

    Article  PubMed  CAS  Google Scholar 

  33. Tan FK, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford). 2006;45(6):694–702.

    Article  PubMed  CAS  Google Scholar 

  34. Duan H, et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 2008;58(5):1465–74.

    Article  PubMed  CAS  Google Scholar 

  35. Grigoryev DN, et al. Identification of candidate genes in scleroderma-related pulmonary arterial hypertension. Transl Res. 2008;151(4):197–207.

    Article  PubMed  CAS  Google Scholar 

  36. Assassi S, et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 2010;62(2):589–98.

    Article  PubMed  CAS  Google Scholar 

  37. Pendergrass SA, et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLoS One. 2010;5(8):e12106.

    Article  PubMed  Google Scholar 

  38. Hsu E, et al. Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension. Arthritis Rheum. 2011;63(3):783–94.

    Article  PubMed  CAS  Google Scholar 

  39. Luzina IG, et al. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol. 2002;26(5):549–57.

    PubMed  CAS  Google Scholar 

  40. Luzina IG, et al. Occurrence of an activated, profibrotic pattern of gene expression in lung CD8+ T cells from scleroderma patients. Arthritis Rheum. 2003;48(8):2262–74.

    Article  PubMed  CAS  Google Scholar 

  41. Whitfield ML, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA. 2003;100(21):12319–24.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou X, et al. Systemic sclerosis (scleroderma): specific autoantigen genes are selectively overexpressed in scleroderma fibroblasts. J Immunol. 2001;167(12):7126–7133.

    PubMed  CAS  Google Scholar 

  43. Tan FK, et al. Classification analysis of the transcriptosome of nonlesional cultured dermal fibroblasts from systemic sclerosis patients with early disease. Arthritis Rheum. 2005;52(3):865–76.

    Article  PubMed  CAS  Google Scholar 

  44. Zhou X, et al. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum. 2005;52(10):3305–14.

    Article  PubMed  CAS  Google Scholar 

  45. Fuzii HT, et al. Affected and non-affected skin fibroblasts from systemic sclerosis patients share a gene expression profile deviated from the one observed in healthy individuals. Clin Exp Rheumatol. 2008;26(5):866–74.

    PubMed  CAS  Google Scholar 

  46. Vuorio T, Makela JK, Vuorio E. Activation of type I collagen genes in cultured scleroderma fibroblasts. J Cell Biochem. 1985;28(2):105–13.

    Article  PubMed  CAS  Google Scholar 

  47. Pendergrass SA, et al. Stable gene expression of serial skin biopsies defines patient subsets in diffuse cutaneous systemic sclerosis. Submitted.

    Google Scholar 

  48. Sorlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74.

    Article  PubMed  CAS  Google Scholar 

  49. Julka PK, et al. A phase II study of sequential neoadjuvant gemcitabine plus doxorubicin followed by gemcitabine plus cisplatin in patients with operable breast cancer: prediction of response using molecular profiling. Br J Cancer. 2008;98(8):1327–35.

    Article  PubMed  CAS  Google Scholar 

  50. Sargent JL, Whitfield ML. Capturing the heterogeneity in systemic sclerosis with genone-wide expression profiling. Exp. Rev Clin Immunol. 2011;7(4):463–73.

    Article  CAS  Google Scholar 

  51. Wong DJ, Chang HY. Learning more from microarrays: insights from modules and networks. J Invest Dermatol. 2005;125(2):175–82.

    PubMed  CAS  Google Scholar 

  52. Sargent JL, et al. Scleroderma gene expression and pathway signatures. Curr Rheumatol Rep. 2008;10(3):205–11.

    Article  PubMed  CAS  Google Scholar 

  53. Sargent JL. et al. J Invest Dermatol: A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity; 2009.

    Google Scholar 

  54. Chung L, et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 2009;60(2):584–91.

    Article  PubMed  CAS  Google Scholar 

  55. Farina G, et al. A four-gene biomarker predicts skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 2010;62(2):580–8.

    Article  PubMed  CAS  Google Scholar 

  56. York MR, et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 2007;56(3):1010–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Whitfield PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Whitfield, M.L., Lafyatis, R. (2012). Disease Classification Using Molecular Signatures. In: Varga, J., Denton, C., Wigley, F. (eds) Scleroderma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5774-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5774-0_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5773-3

  • Online ISBN: 978-1-4419-5774-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics