Skip to main content

Techniques to Detect Defining Chromosomal Translocations/Abnormalities

  • Chapter
  • First Online:
  • 1834 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 4))

Abstract

There are multiple techniques to detect defining chromosomal translocations and other abnormalities, including conventional cytogenetic analysis, fluorescence in situ hybridization (FISH), spectral karyotyping (SKY), DNA microarray analysis, polymerase chain reaction (PCR) analysis, and immunohistochemical (IHC) analysis. These various techniques with their advantages and limitations will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keagle MB, Gersen SL, Basic laboratory procedures. In: Keagle MB, Gersen SL, eds. The Principles of Clinical Cytogenetics. Humana Press, Totowa, NJ; 2005:63–80.

    Chapter  Google Scholar 

  2. Czepulkowski BH. Human cytogenetics: malignancy and acquired abnormalities; a practical approach. In: Rooney DE, ed. Oxford University Press, Oxford, England; 2001.

    Google Scholar 

  3. Shaffer LG, Tommerup N. International Standing Committee on Human Cytogenetic Nomenclature. ISCN 2005. Basel, Switzerland: Karger Press; 2005.

    Google Scholar 

  4. Brunning RD, Matutes E, Harris NL, et al. Acute myeloid leukaemia. In: Jaffe ES, Harris NL, World Health Organization, International Agency for Research on Cancer, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues: Who Classification of Tumours. IARC; 2001:75–91.

    Google Scholar 

  5. Vance GH, Kim H, Hicks GA, et al. Utility of interphase FISH to stratify patients into cytogenetic risk categories at diagnosis of AML in an Eastern Cooperative Oncology Group (ECOG) clinical trial (E1900). Leuk Res. 2007;31:605–609.

    Article  CAS  PubMed  Google Scholar 

  6. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.

    Google Scholar 

  7. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–293.

    Article  CAS  PubMed  Google Scholar 

  8. Hagemeijer A, de Klein A, Gödde-Salz E, et al. Translocation of c-abl to “masked” Ph in chronic myeloid leukemia. Cancer Genet Cytogenet. 1985;18:95–104.

    Article  CAS  PubMed  Google Scholar 

  9. Huntly BJ, Bench A, Green AR. Double jeopardy from a single translocation: deletions of the derivative chromosome 9 in chronic myeloid leukemia. Blood. 2003;102:1160–1168.

    Article  CAS  PubMed  Google Scholar 

  10. Nashed AL, Rao KW, Gulley ML. Clinical applications of BCR-ABL molecular testing in acute leukemia. J Mol Diagn. 2003;5:63–72.

    CAS  PubMed  Google Scholar 

  11. Le Beau MM, Albain KS, Larson RA, et al. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J Clin Oncol. 1986;4:325–345.

    PubMed  Google Scholar 

  12. Vardiman JW, Pierre R, Bain B, et al. Acute myeloid leukaemia. In: Jaffe ES, Harris NL, World Health Organization, International Agency for Research on Cancer, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues: Who Classification of Tumours. IARC, 2001:45–74.

    Google Scholar 

  13. Haase D. Cytogenetic features in myelodysplastic syndromes. Ann Hematol. 2008;87:515–526.

    Article  PubMed  Google Scholar 

  14. Ketterling RP, Wyatt WA, Van Wier SA, et al. Primary myelodysplastic syndrome with normal cytogenetics. Utility of ‘FISH panel testing’ and M-FISH. Leuk Res. 2002;26:235–240.

    Article  CAS  PubMed  Google Scholar 

  15. Cherry AM, Brockman SR, Paternoster SF, et al. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an Eastern Cooperative Oncology Group (ECOG) study. Leuk Res. 2003;27:1085–1090.

    Article  CAS  PubMed  Google Scholar 

  16. Rigolin GM, Bigoni R, Milani R, et al. Clinical importance of interphase cytogenetics detecting occult chromosome lesions in myelodysplastic syndromes with normal karyotype. Leukemia. 2001;15:1841–1847.

    CAS  PubMed  Google Scholar 

  17. Heim S, Mitelman F. Cancer cytogenetics. In: Heim S, Mitelman F, eds. The Principles of Clinical Cytogenetics. Wiley-Liss, New York, NY; 1995:144–179.

    Google Scholar 

  18. Boultwood J, Lewis S, Wainscoat JS. The 5q− syndrome. Blood. 1994;84:3253–3260.

    CAS  PubMed  Google Scholar 

  19. Giagounidis AA, Germing U, Wainscoat JS, et al. The 5q− syndrome. Hematology. 2004;9:271–277.

    Article  CAS  PubMed  Google Scholar 

  20. List A, Dewald G, Bennett J, et al. Myelodysplastic syndrome-003 study investigators. N Engl J Med. 2006;355:1456–1465.

    Article  CAS  PubMed  Google Scholar 

  21. James C, Ugo V, Le Couédic JP. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434:1144–1148.

    Article  CAS  PubMed  Google Scholar 

  22. Brunning RD, Borowitz M, Matutes E, et al. Precursor B-cell and T-cell neoplasms. In: Jaffe ES, Harris NL, World Health Organization, International Agency for Research on Cancer, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues: Who Classification of Tumours. IARC; 2001:109–117.

    Google Scholar 

  23. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.

    Article  CAS  PubMed  Google Scholar 

  24. Secker-Walker LM, Prentice HG, Durrant J, et al. Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. Br J Haematol. 1997;96:601–610.

    Article  CAS  PubMed  Google Scholar 

  25. Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the Cancer and Leukemia Group B experience. Blood. 1999;93:3983–3993.

    CAS  PubMed  Google Scholar 

  26. Mrozek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18:115–136.

    Article  PubMed  Google Scholar 

  27. Heerema NA, Nachman JB, Sather HN, Sensel MG, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood. 1999;94:4036–4045.

    CAS  PubMed  Google Scholar 

  28. Romana SP, Poirel H, Leconiat M, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995;86:4263–4269.

    CAS  PubMed  Google Scholar 

  29. Golub TR, Barker GF, Bohlander SK, et al. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1995;92:4917–4921.

    Article  CAS  PubMed  Google Scholar 

  30. Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995;9:1985–1989.

    CAS  PubMed  Google Scholar 

  31. Harewood L, Robinson H, Harris R, et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003;17:547–553.

    Article  CAS  PubMed  Google Scholar 

  32. Robinson HM, Broadfield ZJ, Cheung KL, et al. Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome. Leukemia. 2003;17:2249–2250.

    Article  CAS  PubMed  Google Scholar 

  33. Thirman MJ, Gill HJ, Burnett RC, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med. 1993;329:909–914.

    Article  CAS  PubMed  Google Scholar 

  34. Collins EC, Rabbitts TH. The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism. Trends Mol Med. 2002;8:436–442.

    Article  CAS  PubMed  Google Scholar 

  35. Harper DP, Aplan PD. Chromosomal rearrangements leading to MLL gene fusions: clinical and biological aspects. Cancer Res. 2008;68:10024–10027.

    Article  CAS  PubMed  Google Scholar 

  36. Eguchi M, Eguchi-Ishimae M, Greaves M. The role of the MLL gene in infant leukemia. Int J Hematol. 2003;78:390–401.

    Article  CAS  PubMed  Google Scholar 

  37. Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109:926–935.

    Article  CAS  PubMed  Google Scholar 

  38. Faderl S, Kantarjian HM, Talpaz M, et al. Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood. 1998;91:3995–4019.

    CAS  PubMed  Google Scholar 

  39. Brunning RD, Borowitz M, Matutes E, et al. Mature B-cell neoplasms. In: Jaffe ES, Harris NL, World Health Organization, International Agency for Research on Cancer, Stein H, Vardiman JW, eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues: Who Classification of Tumours. IARC; 2001:119.

    Google Scholar 

  40. Parry-Jones N, Matutes E, Morilla R, et al. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol. 2007;137:117–124.

    Article  CAS  PubMed  Google Scholar 

  41. Garcia JL, Hernandez JM, Gutierrez NC, et al. Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt’s lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia. 2003;17:2016–2024.

    Article  CAS  PubMed  Google Scholar 

  42. Dewald GW, Kyle RA, Hicks GA, et al. The clinical significance of cytogenetic studies in 100 patients with multiple myeloma plasma cell leukemia, or amyloidosis. Blood. 1985;66:380–390.

    CAS  PubMed  Google Scholar 

  43. Smadja NV, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia (Baltimore). 1998;12:960–969.

    CAS  Google Scholar 

  44. Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–1558.

    Article  CAS  PubMed  Google Scholar 

  45. Debes-Marun C, Dewald G, Bryant S, et al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma. Leukemia. 2003;17:427–436.

    Article  CAS  PubMed  Google Scholar 

  46. Smadja NV, Bastard C, Brigaudeau C, et al. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229–2238.

    Article  CAS  PubMed  Google Scholar 

  47. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520–1529.

    Article  CAS  PubMed  Google Scholar 

  48. Fonseca R, Oken M, Greipp P. The t(4;14)(p16.3;q32) is strongly associated with chromosome 13 abnormalities in both multiple myeloma and monoclonal gammopathies of undetermined significance. Blood. 2001;98:1271–1272.

    Article  CAS  PubMed  Google Scholar 

  49. Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–4575.

    Article  CAS  PubMed  Google Scholar 

  50. Konigsberg R, Zojer N, Ackermann J, et al. Predictive role of interphase cytogenetics for survival of patients with multiple myeloma. J Clin Oncol. 2000;18:804–881.

    CAS  PubMed  Google Scholar 

  51. Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood. 1998;92:802–809.

    CAS  PubMed  Google Scholar 

  52. Schröck E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273:494–497.

    Article  PubMed  Google Scholar 

  53. Pinkel D, Albertson DG. Comparative genomic hybridization. Annu Rev Genomics Hum Genet. 2005;6:331–354.

    Article  CAS  PubMed  Google Scholar 

  54. McCarroll SA. Extending genome-wide association studies to copy-number variation. Hum Mol Genet. 2008;17:135–142.

    Article  CAS  Google Scholar 

  55. Crisan D, Chen S-T, Weil SC. Polymerase chain reaction in the diagnosis of chromosomal breakpoints. Hematol Oncol Clin North Am. 1994;8:725–750.

    CAS  PubMed  Google Scholar 

  56. Copelan EA, McGuire EA. The biology and treatment of acute lymphoblastic leukemia in adults. Blood. 1995;85:1151–1168.

    CAS  PubMed  Google Scholar 

  57. Lin P, Medeiros LJ. Molecular genetic abnormalities in acute and chronic leukemias. In: Coleman WB, Tsongalis GJ, eds. Molecular Diagnostics: for the Clinical Laboratorian, 2nd ed. Humana Press, Inc.; 2006:415–436.

    Google Scholar 

  58. Pane F, Frigeri F, Sindona M, et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood. 1996;88:2410–2414.

    CAS  PubMed  Google Scholar 

  59. Kurzrock R, Kantarijian HM, Druker BJ, et al. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med. 2003;138:819–830.

    CAS  PubMed  Google Scholar 

  60. Biernaux C, Loos M, Sels A, et al. Detection of major bcr-abl gene expression at a very low level in cells of some healthy individuals. Blood. 1995;86:3118–3122.

    CAS  PubMed  Google Scholar 

  61. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–3367.

    CAS  PubMed  Google Scholar 

  62. Vergilio J, Bagg A. Myeloproliferative disorders and myelodysplastic syndromes. In: Leonard DGB, ed. Molecular Pathology in Clinical Practice. Springer; 2007:383–396.

    Google Scholar 

  63. Branford S, Fletcher L, Cross NCP, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112:3330–3338.

    Article  CAS  PubMed  Google Scholar 

  64. Repp R, Borkhardt A, Haupt E, et al. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA fragment analysis. Leukemia. 1995;9:210–215.

    CAS  PubMed  Google Scholar 

  65. Brunning RD, Matutes E, Flandrin G, et al. Acute myeloid leukemia with recurrent cytogenetic abnormalities. In: Jaffe ES, Harris NL, Stein H, et al., eds. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2001:81–82. World Health Organization Classification of Tumours.

    Google Scholar 

  66. Hurwitz CA, Raimondi SC, Head D, et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood. 1992;80:3182–3188.

    CAS  PubMed  Google Scholar 

  67. Haferlach T, Bennett JM, Loffler H, et al. Acute myeloid leukemia with translocation (8;21): cytomorphology, dysplasia and prognostic factors in 41 cases. AML Cooperative Group and ECOG. Leuk Lymphoma. 1996;23:227–234.

    Article  CAS  PubMed  Google Scholar 

  68. Andrieu V, Radford-Weiss I, Troussard X, et al. Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype. Br J Haematol. 1996;92:855–865.

    Article  CAS  PubMed  Google Scholar 

  69. Rege K, Swansbury GJ, Atra AA, et al. Disease features in acute myeloid leukemia with t(8;21)(q22;q22): influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival. Leuk Lymphoma. 2000;40:67–77.

    Article  CAS  PubMed  Google Scholar 

  70. Khoury H, Dalal BI, Nantel SH, et al. Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21). Mod Pathol. 2004;17:1211–1216.

    Article  PubMed  Google Scholar 

  71. Valbuena JR, Medeiros LJ, Rassidakis GZ, et al. Expression of B cell-specific activator protein/PAX5 in acute myeloid leukemia with t(8;21)(q22;q22) in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol. 2006;126:235–240.

    Article  PubMed  Google Scholar 

  72. Lin P, Mahdavy M, Shan F, et al. Expression of PAX5 in CD20-positive multiple myeloma assessed by immunohistochemistry and oligonucleotide microarray. Mod Pathol. 2004;17:1217–1222.

    Article  CAS  PubMed  Google Scholar 

  73. Arthur DC, Bloomfield CD. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood. 1983;61:994–998.

    CAS  PubMed  Google Scholar 

  74. Le Beau MM, Larson RA, Bitter MA, et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med. 1983;309:630–636.

    Article  PubMed  Google Scholar 

  75. Liu PP, Hajra A, Wijmenga C, et al. Molecular pathogenesis of the chromosome 16 inversion in the M4Eo subtype of acute myeloid leukemia. Blood. 1995;85:2289–2302.

    CAS  PubMed  Google Scholar 

  76. Liu P, Tarle SA, Hajra A, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261:1041–1044.

    Article  CAS  PubMed  Google Scholar 

  77. Zhao W, Claxton DF, Medeiros LJ, et al. Immunohistochemical analysis of CBFβ-SMMHC protein reveals a unique nuclear localization in acute myeloid leukemia with inv(16)(p13q22). Am J Surg Pathol. 2006;30:1436–1444.

    Article  PubMed  Google Scholar 

  78. Ngan B-Y, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML. Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomeal translocation. N Engl J Med. 1998;318:638–644.

    Google Scholar 

  79. Pezzella F, Gatter K. What is the value of bcl-2 protein detection for histopathologists? Histopathology. 1995;26:89–93.

    Article  CAS  PubMed  Google Scholar 

  80. Meda BA, Frost M, Newell J, et al. Bcl-2 is consistently expressed in hyperplastic marginal zones of the spleen, abdominal lymph nodes, ileal lymphoid tissue. Am J Surg Pathol. 2003;27(7):888–894.

    Article  PubMed  Google Scholar 

  81. Skinnider BF, Horsman DE, Dupuis B, Gascoyne RD. Bcl-6 and Bcl-2 protein expression in diffuse large B-cell lymphoma and follicular lymphoma: correlation with 3q27 and 18q21 chromosomal abnormalities. Human Pathol. 999;30:803–808.

    Article  CAS  Google Scholar 

  82. Pezzella F, Tse GD, Cordell JL, Pulford KAF, Gatter KC, Mason DY. Expression of the bcl-2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol. 1990;137(2):225–232.

    CAS  PubMed  Google Scholar 

  83. Wheaton S, Netser J, Guinee D, Rahn M, Perkins S. Bcl-2 and bax protein expression in indolent versus aggressive B-cell non-Hodgkin’s lymphomas. Hum Pathol. 1998;29:820–825.

    Article  CAS  PubMed  Google Scholar 

  84. Lai R, Arber DA, Chang KL, Wilson CS, Weiss LM. Frequency of bcl-2 expression in non-Hodgkin’s lymphoma: a study of 778 cases with comparison of marginal zone lymphoma and monocytoid B-cell hyperplasia. Mod Pathol. 1998;11(9):864–869.

    CAS  PubMed  Google Scholar 

  85. Yang WI, Zukerberg LR, Motokura T, Arnold A, Harris NL. Cyclin D1 (bcl-1, PRAD 1) protein expression in low-grade B-cell lymphomas and reactive hyperplasia. Am J Pathol. 1994;145:86–96.

    CAS  PubMed  Google Scholar 

  86. Vasef MA, Medeiros LJ, Koo C, McCourty A, Brynes RK. Cyclin D1 immunohistochemical staining is useful in distinguishing mantle cell lymphoma from other low-grade B-cell neoplasms in bone marrow. Am J Clin Pathol. 1997;108:302–307.

    CAS  PubMed  Google Scholar 

  87. Zukerberg LR, Yang WI, Arnold A, Harris NL. Cyclin D1 expression in non-Hodgkin’s lymphomas. Detection by immunohistochemistry. Am J Clin Pathol. 1995;103:756–760.

    CAS  PubMed  Google Scholar 

  88. de Boer CJ, Schuuring E, Dreef E, et al. Cyclin D1 protein analysis in the diagnosis of mantle cell lymphoma. Blood. 1995;86:2715–2723.

    PubMed  Google Scholar 

  89. Yatabe Y, Nakamura S, Seto M, et al. Clinicopathologic study of PRAD1/cyclin D1 overexpressing lymphoma with special reference to mantle cell lymphoma. A distinct molecular pathologic entity. Am J Surg Pathol. 1996;20:1110–1122.

    Article  CAS  PubMed  Google Scholar 

  90. Singh N, Wright DH. The value of immunohistochemistry on paraffin wax embedded tissue sections in the differentiation of small lymphocytic and mantle cell lymphomas. J Clin Pathol. 1997;50:16–21.

    Article  CAS  PubMed  Google Scholar 

  91. Ott MM, Helbing A, Ott G, et al. bcl-1 rearrangement and cyclin D1 protein expression in mantle cell lymphoma. J Pathol. 1996;179:238–242.

    Article  CAS  PubMed  Google Scholar 

  92. Brynes RK, McCourty A, Tamayo R, Jenkins K, Battifora H. Demonstration of cyclin D1 (bcl-1) in mantle cell lymphoma, enhanced staining using heat and ultrasound epitope retrieval. Appl Immunohistochem. 1997;5:45–48.

    Article  Google Scholar 

  93. Pruneri G, Valentini S, Bertolini F, et al. SP4, a novel anti-cyclin D1 rabbit monoclonal antibody, is a highly sensitive probe for identifying mantle cell lymphomas bearing the t(11;14)(q13;q32) translocation. Appl Immunohistochem Mol Morphol. 2005;13(4):318–322.

    Article  CAS  PubMed  Google Scholar 

  94. Coelho Siqueira SA, Ferreira Alves VA, Beitler B, Otta MM, Nascimento Saldiva PH. Contribution of immunohistochemistry to small B-cell lymphoma classification. Appl Immunohistochem Mol Morphol. 2006;14(1):1–6.

    Article  PubMed  Google Scholar 

  95. The Non-Hodgkin’s Lymphoma Classification Project. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood. 1997;89:3909–3918.

    Google Scholar 

  96. Evan GI, Hancock DC. Studies on the interaction of the human c-myc protein with cell nuclei: P62 c-myc as a member of a discrete subset of nuclear proteins. Cell. 1985;43:253–261.

    Article  CAS  PubMed  Google Scholar 

  97. Wynford-Thomas D. Oncogenes and anti-oncogenes; the molecular basis of tumour behaviour. J Pathol. 1991;165:187–201.

    Article  CAS  PubMed  Google Scholar 

  98. Dogan A, Bagdi E, Munson P, et al. CD10 and bcl-6 expression in paraffin sections of normal lymphoid tissue and B-cell lymphomas. Am J Surg Pathol. 2000;24:846–852.

    Article  CAS  PubMed  Google Scholar 

  99. Kramer MH, Hermans J, Wijburg E, et al. Clinical relevance of bcl2, bcl6, and myc rearrangements in diffuse large B-cell lymphoma. Blood. 1998;92:3152–3162.

    CAS  PubMed  Google Scholar 

  100. Arber DA, Weiss LM. CD10: a review. Appl Immunohistochem. 1997;3:125–140.

    Article  Google Scholar 

  101. Gelb AB, Rouse R, Dorfman RF, et al. Detection of immunophenotypic abnormalities in paraffin-embedded Bilineage non-Hodgkin’s lymphomas. Am J Clin Pathol. 1994;102:825–834.

    CAS  PubMed  Google Scholar 

  102. Frost M, Newell J, Lones MA, et al. Comparative immunohistochemical analysis of pediatric Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Clin Pathol. 2004;121:384–392.

    Article  PubMed  Google Scholar 

  103. Nakamura N, Nakamine H, Tamaru J-I, et al. The distinction between Burkitt lymphoma and diffuse large B-cell lymphoma with c-myc rearrangement. Mod Pathol. 2002;15(7):771–776.

    Article  PubMed  Google Scholar 

  104. Akasaka T, Akasaka H, Ueda C, et al. Molecular and clinical features of non-Burkitt’s diffuse large-cell lymphoma of B-cell type associated with the c-MYC/immunoglobulin heavy-chain fusion gene. J Clin Oncol. 2000;18:510–518.

    CAS  PubMed  Google Scholar 

  105. Pittaluga S, Wlodarska I, Pulford K, et al. The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am J Pathol. 1997;151(2):343–351.

    CAS  PubMed  Google Scholar 

  106. Chang C-C, Kampalath B, Schultz C, et al. Expression of p53, c-Myc, or Bcl-6 suggests a poor prognosis in primary central nervous system diffuse large B-cell lymphoma among immunocompetent individuals. Arch Pathol Lab Med. 2003;127:208–212.

    PubMed  Google Scholar 

  107. Chang C, Liu Y, Cleveland RP, Perkins SL. Expression of c-Myc and p53 correlates with clinical outcome in diffuse large B-cell lymphomas. Am J Clin Pathol. 2000;113:512–518.

    Article  CAS  PubMed  Google Scholar 

  108. Kaneko Y, Frizzera G, Edanura S, et al. A novel translocation t(2; 5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood. 1989;73:806–813.

    CAS  PubMed  Google Scholar 

  109. Benharroch D, Meguerian-Bedoyan Z, Lamant L, et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood. 1998;91:2076–2084.

    CAS  PubMed  Google Scholar 

  110. Mason DY, Pulford KAF, Bischof D, et al. Nucleolar localization of the NMP-ALK tyrosine kinase is not required for malignant transformation. Cancer Res. 1998;58(5):1057–1062.

    CAS  PubMed  Google Scholar 

  111. Falini B, Bigerna B, Fizzotti M, et al. ALK expression defines a distinct group of T/null lymphomas (“ALK lymphomas”) with a wide morphological spectrum. Am J Pathol. 1998;153:875–885.

    CAS  PubMed  Google Scholar 

  112. Herling M, Rassidakis GZ, Viviani S, et al. Anaplastic lymphoma kinase (ALK) is not expressed in Hodgkin’s disease: results with ALK-11 antibody in 327 untreated patients. Leuk Lymphoma. 2000;42:969–979.

    Article  Google Scholar 

  113. Sherman CG, Zielenska M, Lorenzana AN, et al. Morphological and phenotypic features in pediatric large cell lymphoma and their correlation with ALK expression and the t(2;5)(p23;q35) translocation. Pediatr Dev Pathol. 2001;4:129–137.

    Article  CAS  PubMed  Google Scholar 

  114. Falini B, Pileri S, Zinzani PL, et al. ALK + lymphoma: clinicopathologic findings and outcome. Blood. 1999;93:2697–2706.

    CAS  PubMed  Google Scholar 

  115. George DH, Scheithauer BW, Aker FV, et al. Primary anaplastic large cell lymphoma of the central nervous system: prognostic effect of ALK-1 expression. Am J Surg Pathol. 2003;27:487–493.

    Article  PubMed  Google Scholar 

  116. Reichard KK, McKenna RW, Kroft SH. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. Mod Pathol. 2007;20:310–319.

    Article  CAS  PubMed  Google Scholar 

  117. Tsuzuki T, Magi-Galluzzi C, Epstein JI. ALK-1 expression in inflammatory myofibroblastic tumor of the urinary bladder. Am J Surg Pathol. 2004;28:1609–1614.

    Article  PubMed  Google Scholar 

  118. Sukov W, Cheville JC, Carlson AW, et al. Utility of ALK-1 protein expression and ALK rearrangements in distinguishing inflammatory myofibroblastic tunor from malignant spindle cell lesions of the urinary bladder. Mod Pathol. 2007;20:592–603.

    Article  CAS  PubMed  Google Scholar 

  119. Liu S, Tang Z, Zou P. Bcl-1 rearrangement and cyclin D1 protein expression in multiple myeloma precursor cells. J Tongji Med Univ. 2000;20:128–131.

    Article  CAS  PubMed  Google Scholar 

  120. Vasef MA, Medeiros LJ, Yospur LS, Sun NC, McCourty A, Brynes RK. Cyclin D1 protein in multiple myelom and plasmacytoma: an immunohistochemical study using fixed, paraffin-embedded tissue sections. Mod Pathol. 1997;10:927–932.

    CAS  PubMed  Google Scholar 

  121. Pruneri G, Fabris S, Baldini L, et al. Immunohistochemical analysis of cyclin D1 shows deregulated expression in multiple myeloma with the t(11;14). Am J Pathol. 2000;156:1505–1513.

    CAS  PubMed  Google Scholar 

  122. Wilson CS, Butch AW, Lai R, et al. Cyclin D1 and E2F-1 immunoreactivity in bone marrow biopsy specimens of multiple myeloma: relationship to proliferative activity, cytogenetic abnormalities and DNA ploidy. Br J Haematol. 2001;112:776–782.

    Article  CAS  PubMed  Google Scholar 

  123. Dunphy CH, Nies MK, Gabriel DA. Correlation of plasma cell percentages by CD138 immunohistochemistry, Cyclin D1 status, and CD56 expression with clinical parameters and overall survival in plasma cell myeloma. Appl Immunohistochem Mol Morphol. 2007;15(3):248–254.

    Article  CAS  PubMed  Google Scholar 

  124. Athanasiou E, Kaloutsi V, Kotoula V, et al. Cyclin D1 overexpression in multiple myeloma: a morphologic, immunohistochemical, and in situ hybridization study of 71 paraffin-embedded bone marrow biopsy specimens. Am J Clin Pathol. 2001;116:535–542.

    Article  CAS  PubMed  Google Scholar 

  125. Markovic O, Marisavijevic D, Cemerikic V, Suvadzic N, Milic N, Colovic M. Immunohistochemical analysis of cclin D1 and p53 in multiple myeloma: relationship to proliferative activity and prognostic significance. Med Oncol. 2004;21:73–80.

    Article  CAS  PubMed  Google Scholar 

  126. Cook JR, Hsi ED, Worley S, Tubbs RR, Hussein M. Immunohistochemical analysis identifies two cyclin D1+ subsets of plasma cell myeloma, each associated with favorable survival. Am J Clin Pathol. 2006;125:615–624.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morrissette, J.J.D., Weck, K., Dunphy, C.H. (2010). Techniques to Detect Defining Chromosomal Translocations/Abnormalities. In: Dunphy, C. (eds) Molecular Pathology of Hematolymphoid Diseases. Molecular Pathology Library, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5698-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5698-9_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5697-2

  • Online ISBN: 978-1-4419-5698-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics