Skip to main content

Dependence of Spike-Count Correlations on Spike-Train Statistics and Observation Time Scale

  • Chapter

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 7))

Abstract

Spiking activity is typically measured by counting the number of spikes in a certain time interval. The length of this interval, the “bin size”, varies considerably across studies. In this chapter, we provide a mathematical framework to relate the spike-count statistics to the statistics of the underlying point processes. We show that spike-count variances, covariances, and correlation coefficients generally depend in a nontrivial way on the bin size and on the spike-train auto- and cross-correlation structure. The spike-count coherence, in contrast, constitutes a correlation measure independent of bin size.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen A, Gerstein G, Habib M, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61(5):900–917

    CAS  PubMed  Google Scholar 

  • Bair W, Zohary E, Newsome W (2001) Correlated firing in Macaque visual area MT: time scales and relationship to behavior. J Neurosci 21(5):1676–1697

    CAS  PubMed  Google Scholar 

  • Brown EN, Kaas RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7(5):456–461

    Article  CAS  PubMed  Google Scholar 

  • Cox DR (1962) Renewal theory. Methuen, London

    Google Scholar 

  • Daley DJ, Vere-Jones D (2005) An introduction to the theory of point processes, vol 1: Elementary theory and methods, 2nd edn. Springer, New York

    Google Scholar 

  • Fano U (1947) Ionization yield of radiations. II. The fluctuations of the number of ions. Phys Rev 72(1):26–29

    Article  CAS  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol 2, 2nd edn. Wiley, New York

    Google Scholar 

  • Halliday DM (2000) Weak, stochastic temporal correlation of large scale synaptic input is a major determinant of neuronal bandwidth. Neural Comput 12:693–707

    Article  CAS  PubMed  Google Scholar 

  • Hollander M, Wolfe D (1999) Nonparametric statistical methods, 2nd edn. Wiley, New York

    Google Scholar 

  • Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13:717–749

    Article  CAS  PubMed  Google Scholar 

  • Kohn A, Smith MA (2005) Stimulus dependence of neuronal correlations in primary visual cortex of the Macaque. J Neurosci 25(14):3661–3673

    Article  CAS  PubMed  Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361–374

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bote R, Parga N (2006) Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Phys Rev Lett 96:028101

    Article  PubMed  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309(5736):951–954

    Article  CAS  PubMed  Google Scholar 

  • Papoulis A, Pillai SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967a) Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys J 7(4):391–418

    Article  CAS  PubMed  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967b) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7(4):419–440

    Article  CAS  PubMed  Google Scholar 

  • Pipa G, Grün S, van Vreeswijk C (2010). Impact of spike-train auto-structure on probability distribution of joint-spike events. Neural Comput (under revision)

    Google Scholar 

  • Priestley M (1983) Spectral analysis and time series, vols I and II. Academic Press, San Diego

    Google Scholar 

  • Rotter S, Riehle A, Rodriguez Molina V, Aertsen A, Nawrot MP (2005) Different time scales of spike train variability in motor cortex. Abstract viewer and itinerary planner, no 276.7. Society for Neuroscience, Washington

    Google Scholar 

  • Sakurai Y, Takahashi S (2006) Dynamic synchrony of firing in the monkey prefrontal cortex during working-memory tasks. J Neurosci 6(40):10141–10153

    Article  Google Scholar 

  • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13(1):334–350

    CAS  PubMed  Google Scholar 

  • Tetzlaff T, Rotter S, Stark E, Abeles M, Aertsen A, Diesmann M (2008) Dependence of neuronal correlations on filter characteristics and marginal spike-train statistics. Neural Comput 20(9):2133–2184

    Article  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology, vol 1. Cambridge University Press, Cambridge. 0-521-35096-4

    Google Scholar 

  • Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, Aertsen A (1995) Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373(6514):515–518

    Article  CAS  PubMed  Google Scholar 

  • Zohary E, Shadlen MN, Newsome WT (1994) Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–143

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Tetzlaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tetzlaff, T., Diesmann, M. (2010). Dependence of Spike-Count Correlations on Spike-Train Statistics and Observation Time Scale. In: Grün, S., Rotter, S. (eds) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5675-0_6

Download citation

Publish with us

Policies and ethics