Skip to main content

Estimating the Firing Rate

  • Chapter

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 7))

Abstract

Neuronal activity is measured by the number of stereotyped action potentials, called spikes, elicited in response to a stimulus or the behavioral conditions of an animal. Any nonparametric method for grasping the time-varying rate of spike firing contains a single parameter that controls the jaggedness of the estimated rate, such as the binsize of the time histogram or the bandwidth of the kernel smoother. In most neurophysiological studies, the parameter that determines the interpretation of neuronal activity has been selected subjectively by individual researchers. Recently, theories for objectively selecting the parameter have been developed. This chapter introduces the standard rate estimation tools, such as the peri-stimulus time histogram (PSTH), kernel density estimation, or Bayes estimation, and shows ways of selecting their parameters under the principles of minimizing the mean integrated squared error or maximizing the likelihood. We also sum up the methods in handy recipes that may be useful in practical data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M (1982) Quantification, smoothing, and confidence-limits for single-units histograms. J Neurosci Methods 5:317–325

    Article  CAS  PubMed  Google Scholar 

  • Abramson I (1982) On bandwidth variation in kernel estimates—a square root law. Ann Statist 10:1217–1223

    Article  Google Scholar 

  • Adrian ED (1928) The basis of sensation: the action of the sense organs. Christophers, London

    Google Scholar 

  • Akaike H (1980) Likelihood and Bayes procedure. In: Bernardo JM, DeGroot MH, Lindley DV, Smith AFM (eds) Bayesian statistics. University Press, Valencia, p 143

    Google Scholar 

  • Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770–1780

    CAS  PubMed  Google Scholar 

  • Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 105:25–37

    Article  CAS  PubMed  Google Scholar 

  • Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411–7425

    CAS  PubMed  Google Scholar 

  • Carlin BP Louis TA (2000) Bayes and empirical bayes methods for data analysis, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Cherif S, Cullen KE, Galiana HL (2008) An improved method for the estimation of firing rate dynamics using an optimal digital filter. J Neurosci Methods 173:165–181

    Article  PubMed  Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley, New York

    Google Scholar 

  • Cunningham JP, Yu BM, Shenoy KV, Sahani M (2008) Inferring neural firing rates from spike trains using Gaussian processes. Adv Neural Inf Process Syst 20:329–336

    Google Scholar 

  • Daley D, Vere-Jones D (2003) An introduction to the theory of point processes, vol. 1: Elementary theory and methods, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Statist Soc Ser B 39:1–38

    Google Scholar 

  • DiMatteo I, Genovese CR, Kass RE (2001) Bayesian curve-fitting with free-knot splines. Biometrika 88:1055–1071

    Article  Google Scholar 

  • Endres D, Oram M, Schindelin J, Földiák P (2008) Bayesian binning beats approximate alternatives: estimating peri-stimulus time histograms. Adv Neural Inf Process Syst 20:393–400

    Google Scholar 

  • Gerstein GL, Kiang, NYS (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28

    Article  CAS  PubMed  Google Scholar 

  • Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68

    Article  CAS  PubMed  Google Scholar 

  • Good IJ (1965) The estimation of probabilities: an essay on modern Bayesian methods. MIT Press, Cambridge

    Google Scholar 

  • Johnson DH (1996) Point process models of single-neuron discharges. J Comput Neurosci 3:275–299

    Article  CAS  PubMed  Google Scholar 

  • Kass RE, Ventura V, Cai C (2003) Statistical smoothing of neuronal data. Network Comput Neural Syst 14:5–15

    Article  Google Scholar 

  • Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data. J Neurophysiol 94:8–25

    Article  PubMed  Google Scholar 

  • Kostal L, Lansky P (2006) Classification of stationary neuronal activity according to its information rate. Network Comput Neural Syst 17:193–210

    Article  Google Scholar 

  • Koyama S, Shinomoto S (2004) Histogram bin-width selection for time-dependent point processes. J Phys A Math Theor 37:7255–7265

    Article  Google Scholar 

  • Koyama S, Shinomoto S (2005) Empirical Bayes interpretations of random point events. J Phys A Math Theor 38:L531–L537

    Article  Google Scholar 

  • Koyama S, Shimokawa T, Shinomoto S (2007) Phase transitions in the estimation of event rate: a path integral analysis. J Phys A Math Theor 40:F383–F390

    Article  Google Scholar 

  • Koyama S, Paninski L (2009) Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models. J Comput Neurosci doi:10.1007/s10827-009-0179-x

    Google Scholar 

  • Kuffler SW, Fitzhugh R, Barlow HB (1957) Maintained activity in the cat’s retina in light and darkness. J Gen Physiol 40:683–702

    Article  CAS  PubMed  Google Scholar 

  • Loader CR (1999a) Bandwidth selection: classical or plug-in? Ann Statist 27:415–438

    Article  Google Scholar 

  • Loader CR (1999b) Local regression and likelihood. Springer-Verlag, New York

    Google Scholar 

  • MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447

    Article  Google Scholar 

  • Nawrot M, Aertsen A, Rotter S (1999) Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J Neurosci Methods 94:81–92

    Article  CAS  PubMed  Google Scholar 

  • Nawrot MP, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S (2008) Measurement of variability dynamics in cortical spike trains. J Neurosci Methods 169:374–390

    Article  PubMed  Google Scholar 

  • Nemenman I, Bialek W (2002) Occam factors and model-independent Bayesian learning of continuous distributions. Phys Rev E 65:026137

    Article  Google Scholar 

  • Oram MW, Wiener MC, Lestienne R, Richmond BJ (1999) Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J Neurophysiol 81:3021–3033

    CAS  PubMed  Google Scholar 

  • Parzen E (1962) Estimation of a probability density-function and mode. Ann Math Statist 33:1065

    Article  Google Scholar 

  • Paulin MG (1992) Digital filters for firing rate estimation. Biol Cybern 66:525–531

    Article  CAS  PubMed  Google Scholar 

  • Paulin MG, Hoffman LF (2001) Optimal filtering rate estimation. Neural Networks 14:877–881

    Article  CAS  PubMed  Google Scholar 

  • Reich DS, Victor JD, Knight BW (1998) The power ratio and the interval map: spiking models and extracellular recordings. J Neurosci 18:10090–10104

    CAS  PubMed  Google Scholar 

  • Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64:351–369

    CAS  PubMed  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  • Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Statist 9:65–78

    Google Scholar 

  • Sain S, Scott D (1996) On locally adaptive density estimation. J Amer Statist Assoc 91:1525–1534

    Article  Google Scholar 

  • Sain S, Scott D (2002) Zero-bias locally adaptive density estimators. Scand J Statist 29:441–460

    Article  Google Scholar 

  • Shimazaki H, Shinomoto S (2007a) A method for selecting the bin size of a time histogram. Neural Comput 19:1503–1527

    Article  PubMed  Google Scholar 

  • Shimazaki H, Shinomoto S (2007b) Kernel width optimization in the spike-rate estimation. Budelli R, Caputi A, and Gomez L (eds) Neural coding 2007, pp 143–146

    Google Scholar 

  • Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci, published on line. doi:10.1007/s10827-009-0180-4

  • Shimokawa T, Shinomoto S (2009) Estimating instantaneous irregularity of neuronal firing. Neural Comput 21:1931–1951

    Article  PubMed  Google Scholar 

  • Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823–2842

    Article  PubMed  Google Scholar 

  • Shinomoto S, Miyazaki Y, Tamura H, Fujita I (2005) Regional and laminar differences in in vivo firing patterns of primate cortical neurons. J Neurophysiol 94:567–575

    Article  PubMed  Google Scholar 

  • Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, Fujita I, Tamura H, Doi T, Kawano K, Inaba N, Fukushima K, Kurkin S, Kurata K, Taira M, Tsutsui K, Komatsu H, Ogawa T, Koida K, Tanji J, Toyama K (2009) Relating neuronal firing patterns to functional differentiation of cerebral cortex. PLoS Comput Biol 5:e1000433

    Article  PubMed  Google Scholar 

  • Smith AC, Brown EN (2003) Estimating a state-space model from point process observations. Neural Comput 15:965–991

    Article  PubMed  Google Scholar 

  • Snyder D (1975) Random point processes. Wiley, New York

    Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Shinomoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shinomoto, S. (2010). Estimating the Firing Rate. In: Grün, S., Rotter, S. (eds) Analysis of Parallel Spike Trains. Springer Series in Computational Neuroscience, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5675-0_2

Download citation

Publish with us

Policies and ethics