Skip to main content

Bacterial Effectors: Learning on the Fly

  • Conference paper
  • First Online:
Recent Advances on Model Hosts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 710))

Abstract

A common defining characteristic of pathogenic bacteria is the expression of a repertoire of effector molecules that have been named virulence factors. These bacterial factors include a ­variety of proteins, such as toxins that are internalized by receptors and translocate across endosomal membranes to reach the cytosol, as well as others that are introduced directly into the cell by means of bacterial secretory apparatuses. Given the importance of these effectors for understanding bacterial pathogenicity, significant effort has been made to dissect their molecular mechanisms of action and their respective roles during infection. Herein we will discuss how Drosophila have been used as a model system to study these important microbial effectors, and to understand their contribution to pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlund MK, Ryden P, Sjostedt A, Stoven S (2010) Directed screen of Francisella novicida virulence determinants using Drosophila melanogaster. Infect Immun 78:3118–3128

    Article  PubMed  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Schmidt G, Just I (2000) Rho GTPases as targets of bacterial protein toxins. Biol Chem 381:421–426

    Article  PubMed  CAS  Google Scholar 

  • Avet-Rochex A, Bergeret E, Attree I, Meister M, Fauvarque MO (2005) Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa. Cell Microbiol 7:799–810

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM (2005) Regulation, of innate immunity by Rho GTPases. Trends Cell Biol 15:163–171

    Article  PubMed  CAS  Google Scholar 

  • Boquet P, Lemichez E (2003) Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol 13:238–246

    Article  PubMed  CAS  Google Scholar 

  • Botham CM, Wandler AM, Guillemin K (2008) A transgenic Drosophila model demonstrates that the Helicobacter pylori CagA protein functions as a eukaryotic Gab adaptor. PLoS Pathog 4:e1000064

    Article  PubMed  Google Scholar 

  • Bourzac KM, Guillemin K (2005) Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol 7:911–919

    Article  PubMed  CAS  Google Scholar 

  • Boyer L et al (2004) Rac GTPase instructs nuclear factor-kappaB activation by conveying the SCF complex and IkBalpha to the ruffling membranes. Mol Biol Cell 15:1124–1133

    Article  PubMed  CAS  Google Scholar 

  • Boyer et al (2011) Identification of a conserved mechanism of effector-triggered immunity mediated by IMD and Rip proteins. Immunity in press

    Article  PubMed  CAS  Google Scholar 

  • Brodsky IE, Medzhitov R (2009) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11:521–526

    Article  PubMed  CAS  Google Scholar 

  • Cherry S, Silverman N (2006) Host-pathogen interactions in drosophila: new tricks from an old friend. Nat Immunol 7:911–917

    Article  PubMed  CAS  Google Scholar 

  • Clarkson JM, Charnley AK (1996) New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203

    Article  PubMed  CAS  Google Scholar 

  • Colinet D, Schmitz A, Depoix D, Crochard D, Poirie M (2007) Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog 3:e203

    Article  PubMed  Google Scholar 

  • Cornelis GR (2002) Yersinia, type III secretion: send in the effectors. J Cell Biol 158:401–408

    Article  PubMed  CAS  Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:767–782

    Article  PubMed  CAS  Google Scholar 

  • Flatau G et al (1997) Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387:729–733

    Article  PubMed  CAS  Google Scholar 

  • Gottar M et al (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127:1425–1437

    Article  PubMed  CAS  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama M (2006) The role of Helicobacter pylori CagA in gastric carcinogenesis. Int J Hematol 84:301–308

    Article  PubMed  CAS  Google Scholar 

  • Henkel JS, Baldwin MR, Barbieri JT (2010) Toxins from bacteria. EXS 100:1–29

    PubMed  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jones RM et al (2008) Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 3:233–244

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21(4):317–337

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983

    Article  PubMed  CAS  Google Scholar 

  • Lemonnier M, Landraud L, Lemichez E (2007) Rho GTPase-activating bacterial toxins: from bacterial virulence regulation to eukaryotic cell biology. FEMS Microbiol Rev 31:515–534

    Article  PubMed  CAS  Google Scholar 

  • Martinelli C, Reichhart JM (2005) Evolution and integration of innate immune systems from fruit flies to man: lessons and questions. J Endotoxin Res 11:243–248

    PubMed  CAS  Google Scholar 

  • Mittal R, Peak-Chew SY, McMahon HT (2006) Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc Natl Acad Sci USA 103:18574–18579

    Article  PubMed  CAS  Google Scholar 

  • Monack DM, Mecsas J, Ghori N, Falkow S (1997) Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci USA 94:10385–10390

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S et al (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Orth K et al (2000) Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290:1594–1597

    Article  PubMed  CAS  Google Scholar 

  • Palmer LE, Hobbie S, Galan JE, Bliska JB (1998) YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-alpha production and downregulation of the MAP kinases p38 and JNK. Mol Microbiol 27:953–965

    Article  PubMed  CAS  Google Scholar 

  • Palmer LE, Pancetti AR, Greenberg S, Bliska JB (1999) YopJ of Yersnia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect Immun 67:708–716

    PubMed  CAS  Google Scholar 

  • Ribet D, Cossart P (2010) Post-translational modifications in host cells during bacterial infection. FEBS Lett 584:2748–2758

    Article  PubMed  CAS  Google Scholar 

  • Rothenbacher D, Brenner H (2003) Burden of Helicobacter pylori and H. pylori-related diseases in developed countries: recent developments and future implications. Microbes Infect 5:693–703

    Article  PubMed  Google Scholar 

  • Schmidt G et al (1997) Gln 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 387:725–729

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Galan JE (2001) Structural mimicry in bacterial virulence. Nature 412:701–705

    Article  PubMed  CAS  Google Scholar 

  • Stramer B, Wood W (2009) Inflammation and wound healing in Drosophila. Methods Mol Biol 571:137–149

    Article  PubMed  CAS  Google Scholar 

  • Stramer B et al (2005) Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 168:567–573

    Article  PubMed  CAS  Google Scholar 

  • Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N (2007) YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 9:2700–2715

    Article  PubMed  CAS  Google Scholar 

  • Visvikis O, Maddugoda MP, Lemichez E (2010) Direct modifications of Rho proteins: deconstructing GTPase regulation. Biol Cell 102:377–389

    Article  PubMed  CAS  Google Scholar 

  • Vlisidou I et al (2009) Drosophila embryos as model systems for monitoring bacterial infection in real time. PLoS Pathog 5:e1000518

    Article  PubMed  Google Scholar 

  • Vonkavaara M, Telepnev MV, Ryden P, Sjostedt A, Stoven S (2008) Drosophila melanogaster as a model for elucidating the pathogenicity of Francisella tularensis. Cell Microbiol 10:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Weber AN et al (2007) Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand. J Biol Chem 282:13522–13531

    Article  PubMed  CAS  Google Scholar 

  • Zhou H et al (2005) Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J Exp Med 202:1327–1332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Emmanuel Lemichez for critical reading of the manuscript. LMS is supported by startup funds from MGHfC, MGH ECOR and grants from NIH/NIAID. NS is supported by grants from the NIH/NIAID (AI060025 and AI074958) and from BWF. NP is supported by a grant from the NIH (U54 AI057159). LB is supported by a fellowship from the Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Boyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Boyer, L., Paquette, N., Silverman, N., Stuart, L.M. (2012). Bacterial Effectors: Learning on the Fly. In: Mylonakis, E., Ausubel, F., Gilmore, M., Casadevall, A. (eds) Recent Advances on Model Hosts. Advances in Experimental Medicine and Biology, vol 710. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5638-5_4

Download citation

Publish with us

Policies and ethics