Skip to main content

The Effect of Morphology of Activated Electrodes on Their Electrochemical Activity

  • Chapter
  • First Online:
Book cover Electrodeposition

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 48))

Abstract

The noble metals or their oxides are the most convenient substrates for most electrochemical reactions taking place in fuel cells or in industrial electrolysis, for example. Because of this, the “activated” electrodes are introduced, consisting of a conducting, inert support coated with a thin layer of electrocatalyst. In this way, not only the chemical nature of the electrode can be modified but also its morphology and structure in dependence on the procedure of preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Trasatti, “Electrocatalysis in Water Electrolysis“, Book of Abstracts, 1st Regional Symposium on Electrochemistry of South-East Europe, Rovinj, Croatia (2008) 1.

    Google Scholar 

  2. Y. Takasu, T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochim. Acta 48 (2003) 3861.

    Article  CAS  Google Scholar 

  3. Y. Takasu, N. Ohashi, X. -G. Zhang, Y. Murakami, H. Minagawa, S. Sato, and K. Yahikozawa, Electrochim. Acta 41 (1996) 2595.

    Article  CAS  Google Scholar 

  4. N. Pron’kin, O. A. Petrii, G. A. Tsirlina, and D. J. Schiffrin, J. Electroanal. Chem. 480 (2000) 112.

    Article  Google Scholar 

  5. L. Nzoghe-Mendome, A. Aloufy, J. Ebothe, M. El Messiry, and D. Hui, J. Cryst. Growth 311 (2009) 1206.

    Article  CAS  Google Scholar 

  6. J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1361.

    Google Scholar 

  7. K. I. Popov, P. M. Živković, and B. N. Grgur, Electrochim. Acta 52 (2007) 4696.

    Article  CAS  Google Scholar 

  8. K. I. Popov, N. D. Nikolić, P. M. Živković, and G. Branković, Electrochim. Acta 55 (2010) 1919.

    Article  CAS  Google Scholar 

  9. K. I. Popov, P. M. Živković, S. B. Krstić, and N. D. Nikolić, Electrochim. Acta 54 (2009) 2924.

    Article  CAS  Google Scholar 

  10. C. A. Marozzi and A. C. Chialvo, Electrochim. Acta 45 (2000) 2111.

    Article  CAS  Google Scholar 

  11. J. L. Barton and J. O’M. Bockris, Proc. R. Soc. A 268 (1962) 485.

    Article  CAS  Google Scholar 

  12. J. W. Diggle, A. R. Despić, and J. O’M Bockris, J. Electrochem. Soc. 116 (1969) 1503.

    Article  CAS  Google Scholar 

  13. A. R. Despić, J. W. Diggle, and J. O’M Bockris, J. Electrochem. Soc. 116 (1969) 507.

    Article  Google Scholar 

  14. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry 2 B, 2nd edition, Kluwer/Plenum, New York (2000) 1811.

    Google Scholar 

  15. B. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.

    Article  CAS  Google Scholar 

  16. E. Gilleadi, Electrode Kinetics, VCH Publishers, New York (1993) 443.

    Google Scholar 

  17. P. Stonehart and D. Wheeler, “Phosphoric Acid Fuel Cells (PAFCs) for vehicles; Electrocatalyst Crystalite Design, Carbon Support, and Matrix Materials Challenges“ in Modern Aspects of Electrochemistry, Vol. 38, Ed. by B. E. Conway, Kluwer/Plenum, New York (2005) Chapter 4, 385.

    Google Scholar 

  18. J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1248.

    Google Scholar 

  19. K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter, 14.

    Google Scholar 

  20. K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 262.

    Google Scholar 

  21. K. I. Popov, M. D. Maksimović, J. D. Trnjavčev, and M. G. Pavlović, J. Appl. Electrochem. 11 (1981) 239.

    Article  CAS  Google Scholar 

  22. J. S. Newman, Electrochemical Systems, Prentice-Hall, Engelwood Cliffs, NJ (1973) 177.

    Google Scholar 

  23. M. N. Dešić, M. M. Popović, M. D. Obradović, Lj. M. Vračar, and B. N. Grgur, J. Serb. Chem. Soc. 70 (2005) 231.

    Article  Google Scholar 

  24. P. M. Živković, B. N. Grgur, and K. I. Popov, J. Serb. Chem. Soc. 73 (2008) 227.

    Article  Google Scholar 

  25. J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1107.

    Google Scholar 

  26. K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 87, 88.

    Google Scholar 

  27. P. B. Price and D. A. Vermilyea, J. Chem. Phys. 28 (1958) 720.

    Article  CAS  Google Scholar 

  28. W. Lorenz, Z. Electrochem. 58 (1954) 912.

    CAS  Google Scholar 

  29. B. E. Mattsson and J. O’M. Bockris, Trans. Faraday Soc. 55 (1959) 1586.

    Article  Google Scholar 

  30. K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 56.

    Google Scholar 

  31. K. I. Popov, V. Radmilović, B. N. Grgur, and M. G. Pavlović, J. Serb. Chem. Soc. 59 (1994) 47.

    CAS  Google Scholar 

  32. K. I. Popov, N. V. Krstajić, S. R. Popov, and M. I. Čekerevac, J. Appl. Electrochem. 16 (1986) 771.

    Article  CAS  Google Scholar 

  33. K. I. Popov and N. V. Krstajić, J. Appl. Electrochem. 13 (1983) 775.

    Article  CAS  Google Scholar 

  34. K. I. Popov, N. V. Krstajić, and S. R. Popov, J. Appl. Electrochem. 15 (1985) 151.

    Article  CAS  Google Scholar 

  35. I. Markov, A. Boynov, and S. Toshev, Electrochim. Acta 18 (1973) 377.

    Article  CAS  Google Scholar 

  36. S. Štrbac, Z. Rakočević, K. I. Popov, M. G. Pavlović, and R. Petrović, J. Serb. Chem. Soc. 64 (1999) 483.

    Google Scholar 

  37. A. Dimitrov, S. Hadži-Jordanov, K. I. Popov, and M. G. Pavlović, J. Appl. Electrochem. 28 (1998) 791.

    Article  CAS  Google Scholar 

  38. V. Radmilović, K. I. Popov, M. G. Pavlović, A. Dimitrov, and S. Hadži-Jordanov, J. Solid State Electrochem. 2 (1998) 162.

    Article  Google Scholar 

  39. K. I. Popov, B. N. Grgur, E. R. Stoiljković, M. G. Pavlović, and N. D. Nikolić, J. Serb. Chem. Soc. 62 (1997) 433.

    CAS  Google Scholar 

  40. G. D. Adžić, A. R. Despić, and D. M. Dražić, J. Electroanal. Chem. 220 (1988) 169.

    Google Scholar 

  41. G. D. Adžić, A. R. Despić, and D. M. Dražić, J. Electroanal. Chem. 241 (1988) 353.

    Article  Google Scholar 

  42. N. Ya. Kovarskii and T. A. Arzhanova, Elektrokhimiya 22 (1986) 452.

    Google Scholar 

  43. M. L. Avramov Ivić, S. D. Petrović, P. M. Živković, N. D. Nikolić, and K. I. Popov, J. Electroanal. Chem. 549 (2003) 129.

    Article  Google Scholar 

  44. K. I. Popov, M. G. Pavlović, Lj. J. Pavlović, M. I. Čekerevac, and G. Ž. Remović, Surf. Coat. Technol. 34 (1988) 355.

    Article  CAS  Google Scholar 

  45. K. I. Popov, N. V. Krstajić, Z. D. Jerotijević, and S. P. Marinković, Surf. Technol. 26 (1985) 185.

    Article  CAS  Google Scholar 

  46. K. J. Vetter, Electrochemical kinetics, Khimiya, Moskva, 1967, p. 699, Section 162 C, and references therein (in Russian).

    Google Scholar 

  47. K. I. Popov, N. V. Krstajić, and S. R. Popov, Surf. Technol. 20 (1983) 203.

    Article  CAS  Google Scholar 

  48. K. I. Popov, S. S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Kluwer/Plenum, New York (2002) Chapter ??, 78.

    Google Scholar 

  49. G. Wranglen, Electrochim. Acta 2 (1960) 130.

    Article  CAS  Google Scholar 

  50. A. R. Despić and K. I. Popov, “Transport controlled Deposition and Dissolution of Metals“, in Ed. by B. E. Conway and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 7, Plenum, New York (1972) Chapter 4, 241.

    Google Scholar 

  51. I. N. Justinijanović and A. R. Despić, Electrochim. Acta 18 (1973) 709.

    Article  Google Scholar 

  52. K. I. Popov, M. I. Čekerevac, and Lj. M. Nikolić, Surf. Coat. Technol. 34 (1988) 219.

    Article  CAS  Google Scholar 

  53. K. I. Popov and M. I. Čekerevac, Surf. Coat. Technol. 37 (1989) 435.

    Article  CAS  Google Scholar 

  54. I. M. Epstein, Elektrokhimiya 2 (1966) 734.

    Google Scholar 

  55. K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 294.

    Google Scholar 

  56. K. I. Popov, N. V. Krstajić, and M. I. Čekerevac, “The Mechanism of Formation of Coarse and Disperse Electrodeposits“ in Ed. by R. E. White, B. E. Conway, and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 30, Plenum, New York (1996) Chapter ??, 308.

    Google Scholar 

  57. S. Meibhur, E. Yeager, A. Kozawa, and F. Hovorka, J. Electrochem. Soc. 110 (1963) 190.

    Article  Google Scholar 

  58. K. I. Popov, M. G. Pavlović, E. R. Stojilković, and Z. Ž. Stevanović, Hydrometallurgy 46 (1997) 321.

    Article  CAS  Google Scholar 

  59. N. Ibl and K. Schadegg, J. Electrochem. Soc. 114 (1967) 54.

    Article  Google Scholar 

  60. P. M. Živković, N. D. Nikolić, M. Gvozdenović, and K. I. Popov, J. Serb. Chem. Soc. 74 (2009) 291.

    Article  Google Scholar 

  61. J. O’M. Bockris, A. K. N. Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2 A, 2nd edition, Kluwer/Plenum, New York (2000) 1095.

    Google Scholar 

  62. A. R. Despić and K. I. Popov, “Transport controlled Deposition and Dissolution of Metals“, in Ed. by B. E. Conway and J. O’M. Bockris, Modern Aspects of Electrochemistry, Vol. 7, Plenum, New York (1972) Chapter 4, 204.

    Google Scholar 

  63. Yu. Chizmadzhev and Yu. G. Chirkov, “Porous Electrodes“, in Ed. by E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, Comprehensive Treatise of Electrochemistry, Vol. 6, Plenum, New York and London (1983) Chapter ??, 317.

    Google Scholar 

  64. M. V. Ananth, V. V. Giridhar, and K. Renuga, Int. J. Hydrogen Energ. 34 (2009) 658.

    Article  CAS  Google Scholar 

  65. C. A. Marozzi and A. C. Chialvo, Electrochim. Acta 46 (2001) 861.

    Article  CAS  Google Scholar 

  66. L. Zhou, Y. F. Cheng, and M. Amrein, J. Power Sources 177 (2008) 50.

    Article  CAS  Google Scholar 

  67. M. Imamura, T. Haruyama, E. Kobatake, Y. Ikariyama, and M. Aizawa, Sens. Actuators B 24–25 (1995) 113.

    Article  Google Scholar 

  68. H. -K. Seo, D. -J. Park, and J. -Y. Park, Thin Solid Films 516 (2008) 5227.

    Article  CAS  Google Scholar 

  69. I. G. Casella, Electrochim. Acta 54 (2009) 3866.

    Article  CAS  Google Scholar 

  70. S. A. S. Machado, J. Tiengo, P. de Lima Neto, and L. A. Avaca, Electrochim. Acta 39 (1994) 1757.

    Article  CAS  Google Scholar 

  71. L. Li, F. Ye, L. Chen, T. Wang, J. Li, and Z. Wang, J. Power Sources 186 (2009) 320.

    Article  CAS  Google Scholar 

  72. V. Diaz, S. Real, E. Teliz, C. F. Zinola, and M. E. Martins, Int. J. Hydrogen Energ. 34 (2009) 3519.

    Article  CAS  Google Scholar 

  73. D. Pletcher, J. Appl. Electrochem. 14 (1984) 403.

    Article  CAS  Google Scholar 

  74. K. Lohrberg and P. Kohl, Electrochim. Acta 29 (1984) 1557.

    Article  CAS  Google Scholar 

  75. N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, J. Serb. Chem. Soc. 72 (2007) 1369.

    Article  Google Scholar 

  76. N. D. Nikolić, K. I. Popov, Lj. J. Pavlović, and M. G. Pavlović, J. Electroanal. Chem. 588 (2006) 88.

    Article  Google Scholar 

  77. N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović, and K. I. Popov, Electrochim. Acta 52 (2007) 8096.

    Google Scholar 

  78. N. D. Nikolić, G. Branković, V. M. Maksimović, M. G. Pavlović, and K. I. Popov, J. Solid State Electrochem. 14 (2010) 331.

    Article  Google Scholar 

  79. N. D. Nikolić, G. Branković, V. M. Maksimović, M. G. Pavlović, and K. I. Popov, J. Electroanal. Chem. 635 (2009) 111.

    Article  Google Scholar 

  80. G. E. Dima, A. C. A. de Vooys, and M. T. M. Koper, J. Electroanal. Chem. 554–555 (2003) 15.

    Google Scholar 

  81. W. -Y. Ko, W. -H. Chen, C. -Y. Cheng, and K. -J. Lin, Sens. Actuators B 137 (2009) 437.

    Article  Google Scholar 

  82. D. Pletcher and Z. Poorbedi, Electrochim. Acta 24 (1979) 1253.

    Article  CAS  Google Scholar 

  83. K. I. Popov, T. M. Kostić, N. D. Nikolić, E. R. Stojilković, and M. G. Pavlović, J. Electroanal. Chem. 464 (1999) 245.

    Article  CAS  Google Scholar 

  84. A. J. Arvia and R. C. Salvarezza, Electrochim. Acta 39 (1994) 1481.

    Article  CAS  Google Scholar 

  85. W. -Y. Ko, W. -H. Chen, S. -D. Tzeng, S. Gwo, and K. -J. Lin, Chem. Mater. 18 (2006) 6097.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Science and Technological Development of the Republic of Serbia under the research projects: “Deposition of ultrafine powders of metals and alloys and nanostructured surfaces by electrochemical techniques” (No. 142032G) and “Modification of metal and nonmetal materials by electroconductive polymer for application in new technologies” (No. 142044).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Popov, K.I., Živković, P.M., Nikolić, N.D. (2010). The Effect of Morphology of Activated Electrodes on Their Electrochemical Activity. In: Djokic, S. (eds) Electrodeposition. Modern Aspects of Electrochemistry, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5589-0_4

Download citation

Publish with us

Policies and ethics