Skip to main content

Dietary Catechols and their Relationship to Microbial Endocrinology

  • Chapter
  • First Online:
  • 1142 Accesses

Abstract

This chapter examines the evidence that the ability of neuroendocrine hormones, notably norepinephrine and epinephrine, to stimulate bacterial growth in iron-restricted media is not limited to molecules with a catecholamine structure but is also possessed by a variety of other catechols, many of which are of plant origin and are common in the diet. Catechols derived from the diet, such as the tea flavanols, can be present in the plasma at submicromolar and micromolar concentrations, comparable with the concentrations of catecholamines that have been shown to be effective in promoting bacterial growth under conditions of iron restriction, although many dietary catechols, notably quercetin derivatives, are present in the plasma and tissues largely as conjugates, from which the catechol function has been lost. Finally, although bacterial growth promotion through relief of iron restriction appears to be exhibited by a wide range of catechols, the gene-activation effects of catecholamines demonstrated to occur in some bacteria may be much more specific, although the definitive experiments to establish structure-function relationships have yet to be reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, M. T., and Armstrong, S. K. 2006. The Bordetella Bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J. Bacteriol. 188:5731–5740.

    Article  PubMed  CAS  Google Scholar 

  • Andjelković, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., and Verhe, R. 2006. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 98:23–31.

    Article  Google Scholar 

  • Andrews, S. C., Robinson, A. K., and Rodriguez-Quinones, F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215–237.

    Article  PubMed  CAS  Google Scholar 

  • Benedict, C. R., and Grahame-Smith, D. G. 1978. Plasma noradrenaline and adrenaline concentrations and dopamine-β-hydroxylase activity in patients with shock due to septicaemia, trauma and haemorrhage. Q. J. Med.1–20.

    PubMed  CAS  Google Scholar 

  • Boudet, A.-M. 2007. Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, D. W., Walle, U. K., and Walle, T. 1998. Extensive binding of the bioflavonoid quercetin to human plasma proteins. J. Pharm. Pharmacol. 50:243–249.

    Article  PubMed  CAS  Google Scholar 

  • Bruyneel, B., Vande Woestyne, M., and Verstraete, W. 1989. Lactic-acid bacteria – microorganisms able to grow in the absence of available iron and copper. Biotechnol. Lett. 11:401–406.

    Article  CAS  Google Scholar 

  • Burton, C. L., Chhabra, S. R., Swift, S., Baldwin, T. J., Withers, H., Hill, S. J., and Williams, P. 2002. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect. Immun. 70:5913–5923.

    Article  PubMed  CAS  Google Scholar 

  • Chvátalová, K., Slaninová, I., Brězinová, L., and Slanina, J. 2008. Influence of dietary phenolic acids on redox status of iron: ferrous iron autoxidation and ferric iron reduction. Food Chem. 106:650–660.

    Article  Google Scholar 

  • Chung, K.-T., Lu, Z., and Chou, M. W. 1998. Mechanism of inhibition of tannic acid and related compounds on the growth of intestinal bacteria. Food Chem. Toxicol. 36:1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. B., Hughes, D. T., Zhu, C., Boedeker, E. C., and Sperandio, V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc. Natl. Acad. Sci. USA 103:10420–10425.

    Article  PubMed  CAS  Google Scholar 

  • Clifford, M. N. 2000a. Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food. Agric. 80:1033–1043.

    Article  CAS  Google Scholar 

  • Clifford, M. N. 2000b. Anthocyanins – nature, occurrence and dietary burden. J. Sci. Food. Agric. 80:1063–1072.

    Article  CAS  Google Scholar 

  • Cooper, R., Morré, D. J., and Morré, D. M. 2005. Medicinal benefits of green tea: part I. Review of noncancer health benefits. J. Alternat. Complement. Med. 11:521–528.

    Article  Google Scholar 

  • Coulanges, V., Andre, P., and Vidon, D. J.-M. 1998. Effect of siderophores, catecholamines, and catechol compounds on Listeria spp. growth in iron-complexed medium. Biochem. Biophys. Res. Commun. 249:526–530.

    Article  PubMed  CAS  Google Scholar 

  • Coulanges, V., Andre, P., Ziegler, O., Buchheit, L., and Vidon, D. J.-M. 1997. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect. Immun. 65:2778–2785.

    PubMed  CAS  Google Scholar 

  • Couteau, D., McCartney, A. L., Gibson, G. R., Williamson, G., and Faulds, C. B. 2001. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J. Appl. Microbiol. 90:873–881.

    Article  PubMed  CAS  Google Scholar 

  • Cremin, P., Kasim-Karakas, S., and Waterhouse, A. L. 2001. LC/ES-MS detection of hydroxycinnamates in human plasma and urine. J. Agric. Food Chem. 49:1747–1750.

    Article  PubMed  CAS  Google Scholar 

  • Crosa, J. H., and Walsh, C. T. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66:223–249.

    Article  PubMed  CAS  Google Scholar 

  • Day, A. J., Mellon, F., Barron, D., Sarrazin, G., Morgan, M. R., and Williamson, G. 2001. Human metabolism of dietary flavonoids: identification of plasma metabolites of quercitin. Free Radic. Res. 35:941–952.

    Article  PubMed  CAS  Google Scholar 

  • Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T., and Williamson, G. 2003. Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucoside transporter. Biochem. Pharmacol. 65:1199–1206.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, J. L., Bell, J. R., Kasim-Karakas, S., German, J. B., Walzem, R. L., Hansen, R. J., and Waterhouse, A. L. 1999. Catechin is present as metabolites in human plasma after consumption of red wine. J. Nutr. 129:1662–1668.

    PubMed  CAS  Google Scholar 

  • Dufour, C., and Dangles, O. 2005. Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta 1721:164–173.

    Article  PubMed  CAS  Google Scholar 

  • Espín, J. C., García-Conesa, M. T., and Tomás-Barberán, F. A. 2007. Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008.

    Article  PubMed  Google Scholar 

  • Evans, D. A., Hirsch, J. B., and Dushenkov, S. 2006. Phenolics, inflammation and nutrigenomics. J. Sci. Food Agric. 86:2503–2509.

    Article  CAS  Google Scholar 

  • Freestone, P. P. E., Lyte, M., Neal, C. P., Maggs, A. F., Haigh, R. D., and Williams, P. H. 2000. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol. 182:6091–6098.

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P. E., Williams, P. H., Haigh, R. D., Maggs, A. F., Neal, C. P., and Lyte, M. 2002. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock 18:465–470.

    Article  PubMed  Google Scholar 

  • Freestone, P. P. E., Haigh, R. D., Williams, P. H., and Lyte, M. 2003. Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol. Lett. 222:39–43.

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P. E., Haigh, R. D., and Lyte, M. 2007a. Specificity of catecholamine-induced growth in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiol. Lett. 269:221–228.

    Article  PubMed  CAS  Google Scholar 

  • Freestone, P. P. E., Haigh, R. D., and Lyte, M. 2007b. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli 0157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 7:8.

    Article  PubMed  Google Scholar 

  • Freestone, P. P. E., Walton, N. J., Haigh, R. D., and Lyte, M. 2007c. Influence of dietary catechols on the growth of enteropathogenic bacteria. Int. J. Food Microbiol. 119:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Gonthier, M.-P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J.-M., Poutanen, K., and Aura, A.-M. 2006. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother. 60:536–540.

    Article  PubMed  CAS  Google Scholar 

  • Graefe, E. U., Wittig, J., Mueller, S., Riethling, A. K., Uehleke, B., Drewelow, B., Pforte, H., Jacobasch, G., Derendorf, H., and Veit, M. 2001. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 41:492–499.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, E. A., Duffy, L. C., Schanbacher, F. L., Dryja, D., Leavens, A., Neiswander, R. L., Qiao, H. P., DiRienzo, D., and Ogra, P. 2003. In vitro growth responses of bifidobacteria and enteropathogens to bovine and human lactoferrin. Dig. Dis. Sci. 48:1324–1332.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson, J. M., and Croft, K. D. 2006. Dietary flavonoids: effects on endothelial function and blood pressure. J. Sci. Food Agric. 86:2492–2498.

    Article  CAS  Google Scholar 

  • Hollman, P. C. H., and Arts, I. C. W. 2000. Flavonols, flavones and flavanols – nature, occurrence and dietary burden. J. Sci. Food Agric. 80:1081–1093.

    Article  CAS  Google Scholar 

  • Hollman, P. C. H., van Trijp, J. M. P., Buysman, M. N. C. P., Gaag, M. S. v. d., Mengelers, M. J. B., de Vries, J. H. M., and Katan, M. B. 1997. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 418:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Khan, N., Afaq, F., and Mukhtar, H. 2008. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid. Redox Signal. 10:475–510.

    Article  PubMed  CAS  Google Scholar 

  • Khokhar, S., and Apenten, R. K. O. 2003. Iron binding characteristics of phenolic compounds: some tentative structure–activity relations. Food Chem. 81:133–140.

    Article  CAS  Google Scholar 

  • Komprda, T., Burdychová, R., Dohnal, V., Cwiková, O., Sládková, P., and Dvořáčková, H. 2008. Tyramine production in Dutch-type semi-hard cheese from two different producers. Food Microbiol. 25:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Kulma, A., and Szopa, J. 2007. Catecholamines are active compounds in plants. Plant Sci. 172:433–440.

    Article  CAS  Google Scholar 

  • Loke, W. M., Proudfoot, J. M., Stewart, S., McKinley, A. J., Needs, P. W., Kroon, P. A., Hodgson, J. M., and Croft, K. D. 2008. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem. Pharmacol. 75:1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Lyte, M. 1997. Induction of Gram-negative bacterial growth by neurochemical containing banana (Musa × paradisiacal) extracts. FEMS Microbiol. Lett. 154:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Lyte, M. 2004a. Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol. 12:14–20.

    Article  PubMed  CAS  Google Scholar 

  • Lyte, M. 2004b. The biogenic amine tyramine modulates the adherence of Escherichia coli O157:H7 to intestinal mucosa. J. Food Protect. 67:878–883.

    CAS  Google Scholar 

  • Manach, C., Morand, C., Crespy, V., Demigné, C., Texier, O., Régérat, F., and Rémésy, C. 1998. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 426:331–336.

    Article  PubMed  CAS  Google Scholar 

  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., and Jiménez, L. 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747.

    PubMed  CAS  Google Scholar 

  • Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81(suppl.):230S–242S

    PubMed  CAS  Google Scholar 

  • Mennen, L. I., Walker, R., Bennetau-Pelissero, C., and Scalbert, A. 2005. Risks and safety of polyphenol consumption. Amer. J. Clin. Nutr. 81(suppl.):326S–329S.

    PubMed  CAS  Google Scholar 

  • Mila, I., Scalbert, A., and Expert, D. 1996. Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochemistry 42:1551–1555.

    Article  CAS  Google Scholar 

  • Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., and Becana, M. 1997. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic. Biol. Med. 22:861–870.

    Article  PubMed  CAS  Google Scholar 

  • Naikare, H., Palyada, K., Panciera, R., Marlow, D., and Stintzi, A. 2006. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 74:5433–5444.

    Article  PubMed  CAS  Google Scholar 

  • Natsume, M., Osakabe, N., Oyama, M., Sasaki, M., Baba, S., Nakamura, Y., Osawa, T., and Terao, J. 2003. Structures of (−)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (−)-epicatechin: differences between human and rat. Free Radic. Biol. Med. 34:840–849.

    Article  PubMed  CAS  Google Scholar 

  • Németh, K., Plumb, G. W., Berrin, J. G., Juge, N., Jacob, R., Naim, H. Y., Williamson, G., Swallow, D. M. and Kroon, P. A. 2003. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 42:29–42.

    Article  PubMed  Google Scholar 

  • Pandey, A., Bringel, F., and Meyer, J.-M. 1994. Iron requirement and search for siderophores in lactic-acid bacteria. Appl. Microbiol. Biotechnol. 40:735–739.

    Article  CAS  Google Scholar 

  • Parr, A. J., and Bolwell, G. P. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80:985–1012.

    Article  CAS  Google Scholar 

  • Prior, R. L., Wu, X., and Gu, L. 2006. Flavonoid metabolism and challenges to understanding health effects. J. Sci. Food Agric. 86:2487–2491.

    Article  CAS  Google Scholar 

  • Rahman, I. 2006. Beneficial effects of dietary polyphenols using lung inflammation as a model. J. Sci. Food Agric. 86:2499–2502.

    Article  CAS  Google Scholar 

  • Rein, D., Lotito, S., Holt, R. R., Keen, C. L., Schmitz, H. H., and Fraga, C. G. 2000. Epicatechin in human plasma: in vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr. 130:2109S–2114S.

    PubMed  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., and Pridham, J. B. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22:375–379.

    Article  PubMed  CAS  Google Scholar 

  • Ross, J. A., and Kassum, C. M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 22:19–34.

    Article  PubMed  CAS  Google Scholar 

  • Samanta, S. 2004. Impact of tannic acid on the gastrointestinal microflora. Microb. Ecol. Health Dis. 16:32–34.

    Article  CAS  Google Scholar 

  • Santos, M. H. S. 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29:213–231.

    Article  CAS  Google Scholar 

  • Santos-Buelga, C., and Scalbert, A. 2000. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food. Agric. 80:1094–1117.

    Article  CAS  Google Scholar 

  • Scalbert, A. 1991. Antimicrobial properties of tannins. Phytochemistry 30:3875–3883.

    Article  CAS  Google Scholar 

  • Scheckelhoff, M. R., Telford, S. R., Wesley, M., and Hu, L. T. 2007. Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A. Proc. Natl. Acad. Sci. USA 104:7247–7252.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C. L., Hollenberg, N. K, Sies, H., Uribe-Kwik, C., Schmitz, H. H., and Kelm, M. 2006. (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 103:1024–1029.

    Article  PubMed  CAS  Google Scholar 

  • Sesink, A. L. A., Arts, I. C. W., Faassen-Peters, M., and Hollman, P. C. H. 2003. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactase phlorizin hydrolase. J. Nutr. 133:773–776.

    PubMed  CAS  Google Scholar 

  • Shixian, Q., VanCrey, B., Shi, J., Kakuda, Y., and Jiang, Y. 2006. Green tea extract thermogenesis-induced weight loss by epigallocatechin gallate inhibition of catechol-O-methyltransferase. J. Med. Food 9: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Soler-Rivas, C., Espín, J. C., and Wichers, H. J. 2000. Oleuropein and related compounds. J. Sci. Food. Agric. 80:1013–1023.

    Article  CAS  Google Scholar 

  • Sperandio. V., Torres, A. G., Jarvis, B., Nataro, J. P., and Kaper, J. B. 2003. Bacterial-host communication: The language of hormones. Proc. Natl. Acad. Sci. USA 100:9851–8956.

    Article  Google Scholar 

  • Taguri, T., Tanaka, T., and Kouno, I. 2006. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 29:2226–2235.

    Article  PubMed  CAS  Google Scholar 

  • Tomás-Barberán, F. A., and Clifford, M. N. 2000. Dietary hydroxybenzoic acid derivatives – nature, occurrence and dietary burden. J. Sci. Food. Agric. 80:1024–1032.

    Article  Google Scholar 

  • Vitaglione, P., Donnarumma, G., Napolitano, A., Galvano, F., Gallo, A., Scalfi, L., and Fogliano, V. 2007. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J. Nutr. 137:2043–2048.

    PubMed  CAS  Google Scholar 

  • Wang, J. F., Schramm, D. D., Holt, R. R., Ensunsa, J. L., Fraga, C. G., Schmitz, H. H., and Keen, C. L. 2000. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J. Nutr. 130:2115S–2119S.

    PubMed  CAS  Google Scholar 

  • Wu, X., Cao, G., and Prior, R. L. 2002. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J. Nutr. 132:1865–1871.

    PubMed  CAS  Google Scholar 

  • Zhu, B. T., Shim, J.-Y., Nagai, M., and Bai, H.-W. 2008. Molecular modelling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (−)-epigallocatechin-3-O-gallate. Xenobiotica 38: 130–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

N.S. is supported by BBSRC responsive mode grant No. BB/D013135/1 awarded under the BBSRC’s GPS scheme and co-funded by the FSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Shearer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Shearer, N., Walton, N.J. (2010). Dietary Catechols and their Relationship to Microbial Endocrinology. In: Lyte, M., Freestone, P. (eds) Microbial Endocrinology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5576-0_4

Download citation

Publish with us

Policies and ethics