Skip to main content

The Cytogenetics of Hematologic Neoplasms

  • Chapter
  • First Online:
The Principles of Clinical Cytogenetics

Abstract

The knowledge that cancer is a malignant form of uncontrolled growth has existed for over a century. Several biological, chemical, and physical agents have been implicated in cancer causation. However, the mechanisms responsible for this uninhibited proliferation, following the initial insult(s), are still object of intense investigation.

The first documented studies of cancer were performed over a century ago on domestic animals. At that time, the lack of both theoretical and technological knowledge impaired the formulations of conclusions about cancer, other than the visible presence of new growth, thus the term neoplasm (from the Greek neo = new and plasma = growth).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveri T. Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verhandlungen der Physikalisch-medicinischen Gesellschaft zu Würzburg. Würzburg: Stuber; 1902.

    Google Scholar 

  2. Sutton WS. The chromosomes in heredity. Biol Bull. 1902;4:231–51.

    Article  Google Scholar 

  3. Boveri T. Zur Frage der Entstehung Maligner Tumoren. Yena: Gustav Fisher; 1914.

    Google Scholar 

  4. Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497.

    Google Scholar 

  5. Meloni-Ehrig A. Cytogenetic analysis. In: Body fluid analysis for cellular composition; approved guideline (H56A). Wayne: Clinical and Laboratory Standards Institute; 2006.

    Google Scholar 

  6. Dewald G, Hicks G, Dines D, et al. Usefulness of culture methods to aid cytogenetic analyses for the diagnosis of malignant pleural effusions. Mayo Clin Proc. 1982;57:488.

    PubMed  CAS  Google Scholar 

  7. Morgan SS, Poland-Johnston NK, Meloni A, Morgan R. Methodology and experience in culturing and testing the GCT cell line for bone marrow cytogenetic improvement. Karyogram. 1988;14:7–9.

    Google Scholar 

  8. Struski S, Gervais C, Helias C, et al. Stimulation of B-cell lymphoproliferations with CpG-oligonucleotide DSP30 plus IL-2 is more effective than with TPA to detect clonal abnormalities. Leukemia. 2009;23:617–9.

    Article  PubMed  CAS  Google Scholar 

  9. Dewald G, Allen J, Strutzenberg D, et al. A cytogenetic method for mailed-in bone marrow specimen for the study of hematologic disorders. Lab Med. 1982;13:225.

    Google Scholar 

  10. Nowell PC. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res. 1960;20:462–6.

    PubMed  CAS  Google Scholar 

  11. Spurbeck J, Zinsmeister A, Meyer K, et al. Dynamics of chromosome spreading. Am J Med Genet. 1996;61:387.

    Article  PubMed  CAS  Google Scholar 

  12. Drets ME, Shaw MW. Specific banding patterns of human chromosomes. Exp Cell Res. 1971;68:2073–7.

    CAS  Google Scholar 

  13. Rowley J, Potter D. Chromosomal banding patterns in acute nonlymphocytic leukemia. Blood. 1976;47:705.

    PubMed  CAS  Google Scholar 

  14. Shaffer LG, Slovak ML, Campbell LJ. ISCN 2009: an international system for human cytogenetic nomenclature. Basel: S. Karger; 2009.

    Google Scholar 

  15. Tirado CA, Meloni-Ehrig AM, Jahn JA, Edwards T, Scheerle J, Burks K, Repetti C, Christacos NC, Kelly JC, Greenberg J, Murphy C, Croft CD, Heritage D, Mowrey PN. Cryptic ins(4;11)(q21;q23q23) detected by fluorescence in situ hybridization: a variant of t(4;11)(q21;q23) in an infant with a precursor B-cell lymphoblastic leukemia. Report of a second case. Cancer Genet Cytogenet. 2007;174:166–9.

    Article  PubMed  CAS  Google Scholar 

  16. Kelly JC, Shahbazi N, Scheerle J, Jahn J, Suchen S, Christacos NC, Mowrey PN, Witt MH, Hostetter A, Meloni-Ehrig AM. Insertion (12;9)(p13;q34q34): a cryptic rearrangement involving ABL1/ETV6 fusion in a patient with Philadelphia-negative chronic myeloid leukemia. Cancer Genet Cytogenet. 2009;192(1):36–9.

    Article  PubMed  CAS  Google Scholar 

  17. Cremer T, Landegent J, Bruckner A, et al. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet. 1986;74:346.

    Article  PubMed  CAS  Google Scholar 

  18. Tkachuk DC, Westbrook CA, Andreeff M, et al. Detection of BCR-ABL fusion in chronic myelogenous leukemia by in situ hybridization. Science. 1990;259:559.

    Article  Google Scholar 

  19. Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet. 1996;12:368.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang FF, Murata-Collins JL, Gaytan P, et al. Twenty-four-color spectral karyotyping reveals chromosome aberrations in cytogenetically normal and acute myeloid leukemia. Genes Chromosomes Cancer. 2000;28:318.

    Article  PubMed  CAS  Google Scholar 

  21. Pinkel D, Alberson DG. Array comparative genomic hybridization and its application to cancer. Nat Genet. 2005;37(Suppl):S11.

    Article  PubMed  CAS  Google Scholar 

  22. Kallioniemi A, Kallioniemi OP, Sudar D, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818.

    Article  PubMed  CAS  Google Scholar 

  23. Wilkens L, Tchinda J, Burkhardt D, et al. Analysis of hematological diseases using conventional karyotyping, fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). Hum Pathol. 1998;29:833.

    Article  PubMed  CAS  Google Scholar 

  24. Gargallo P, Cacchione R, Chena C, et al. Chronic lymphocytic leukemia developing in a patient with chronic myeloid leukemia: evidence of distinct lineage-associated genomic events. Cancer Genet Cytogenet. 2005;161:74–7.

    Article  PubMed  CAS  Google Scholar 

  25. Robak T, Urbańska-Ryś H, Smolewski P, et al. Chronic myelomonocytic leukemia coexisting with B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44(11):2001–8.

    Article  PubMed  Google Scholar 

  26. Kelly MJ, Meloni-Ehrig AM, Manley PE, Altura RA. Poor outcome in a pediatric patient with acute myeloid leukemia associated with a variant t(8;21) and trisomy 6. Cancer Genet Cytogenet. 2009;189(1):48–52.

    Article  PubMed  CAS  Google Scholar 

  27. Busque L, Gilliland DG. Clonal evolution in acute myeloid leukemia. Blood. 1993;82:337.

    PubMed  CAS  Google Scholar 

  28. Shanafelt TD, Witzig TE, Fink SR, et al. Prospective evaluation of clonal evolution during long-term follow-up of patients with untreated early-stage chronic lymphocytic leukemia. J Clin Oncol. 2006;24:4634.

    Article  PubMed  Google Scholar 

  29. Hoglund M, Sehn L, Connors JM, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer. 2004;39:195.

    Article  PubMed  Google Scholar 

  30. Tijo JH, Levan A. The chromosome number in man. Hereditas. 1956;42:1–6.

    Article  Google Scholar 

  31. Ford CE, Hamerton JL. The chromosomes of man. Nature. 1956;178:1020–3.

    Article  PubMed  CAS  Google Scholar 

  32. Ford CE, Jacobs PA. Human somatic chromosomes. Nature. 1958;181:1565–8.

    Article  PubMed  CAS  Google Scholar 

  33. Rowley JD. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet. 1973;16: 109–12.

    PubMed  CAS  Google Scholar 

  34. Ford JH, Pittman SM. Duplication of 21 or 8/21 translocation in acute leukaemia. Lancet. 1974;2:1458.

    Article  PubMed  CAS  Google Scholar 

  35. Ford JH, Pittman SM, Gunz FW. Consistent chromosome abnormalities in acute leukaemia. Br Med J. 1974;4:227–8.

    Article  PubMed  CAS  Google Scholar 

  36. Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations in Cancer. Available at http://cgap.nci.nih.gov/Chromosomes/Mitelman (2008). Accessed Oct 2010.

  37. Heim S, Mitelman F, editors. Cancer cytogenetics. 3rd ed. Hoboken: Wiley-Blackwell; 2009.

    Google Scholar 

  38. Mitelman F, Johannsson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nature. 2007;7:233.

    CAS  Google Scholar 

  39. Rowley JD. Chromosomal translocations: revisited yet again. Blood. 2008;112:2183–9.

    Article  PubMed  CAS  Google Scholar 

  40. Meloni A, Morgan R, Piatt J, Sandberg AA. Translocation (1;11)(q21;q23); a new subgroup within M4 ANLL. Cancer Genet Cytogenet. 1989;37:269–71.

    Article  Google Scholar 

  41. Morgan R, Riske CB, Meloni A, Ries CA, Johnson CH, Lemons RS, Sandberg AA. t(16;21)(p11.2;q22): a recurrent primary arrangement in ANLL. Cancer Genet Cytogenet. 1991;53:83–90.

    Article  PubMed  CAS  Google Scholar 

  42. Rowley JD, Golumb H, Dougherty C. 15/17 translocation a consistent chromosomal change in acute promyelocytic leukemia. Lancet. 1977;1:549.

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Morgan R, Notohamiprodjo M, Meloni-Ehrig A, Schuster RT, Bennett JS, Cohen JD, Stone JF, Sandberg AA. The Philadelphia chromosome as a secondary change in leukemia: three case reports and an overview of the literature. Cancer Genet Cytogenet. 1997;101:148–51.

    Article  Google Scholar 

  44. Nucifora G, Rowley JD. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood. 1995;86:1.

    PubMed  CAS  Google Scholar 

  45. Welzler M, Dodge RK, Mrozek K, et al. Additional cytogenetic abnormalities in adults with Philadelphia chromosome positive acute lymphoblastic leukemia: a study of the Cancer and Leukemia Group B. Br J Haematol. 2004;124:275.

    Article  Google Scholar 

  46. Peterson LF, Zhang D-E. The 8;21 in leukemogenesis. Oncogene. 2004;23:4255.

    Article  PubMed  CAS  Google Scholar 

  47. Perea G, Lasa A, Aventin A, et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia. 2006;20:87.

    Article  PubMed  CAS  Google Scholar 

  48. de The H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature. 1990;347:558.

    Article  PubMed  Google Scholar 

  49. Ben-Neriah Y, Daley GQ, Mes-Masson A-M, et al. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233:212.

    Article  PubMed  CAS  Google Scholar 

  50. Hiebert SW, Lutterbach B, Amann J. Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;21), and inv(16) fusion proteins. Curr Opin Hematol. 2001;8:197.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185.

    Article  PubMed  CAS  Google Scholar 

  52. Bende RJ, Smit LA, van Noesel CJM. Molecular pathways in follicular lymphoma. Leukemia. 2007;21:18.

    Article  PubMed  CAS  Google Scholar 

  53. Dalla-Favera R, Bregni M, Erikson J, et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79:7824.

    Article  PubMed  CAS  Google Scholar 

  54. Meloni-Ehrig AM, Alexander E, Nathan SV, Ahmed MS, Smith ED, Scheerle J, Kelly JC, Meck JM, Mowrey PM. Deletion 6p as the sole chromosome abnormality in a patient with therapy-related myelodysplastic syndrome. Case report and review of the literature. Cancer Genet Cytogenet. 2010;197:81–3.

    Article  PubMed  CAS  Google Scholar 

  55. Meck J, Otani-Rosa J, Neuberg R, Welsh J, Mowrey P, Meloni-Ehrig AM. A rare finding of deletion 5q in a pediatric patient with myelomonocytic leukemia. Cancer Genet Cytogenet. 2009;195(2): 192–4.

    Article  PubMed  CAS  Google Scholar 

  56. Sole F, Luno E, Sanzo C, et al. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica. 2005; 90:1168.

    PubMed  CAS  Google Scholar 

  57. Bernasconi P, Boni M, Cavigliano PM, et al. Clinical relevance of cytogenetics in myelodysplastic syndrome. Ann N Y Acad Sci. 2006;1089:395.

    Article  PubMed  Google Scholar 

  58. Olney HJ, Le Beau MM. Evaluation of recurring cytogenetic abnormalities in the treatment of myelodysplastic syndromes. Leuk Res. 2007;31:427.

    Article  PubMed  CAS  Google Scholar 

  59. Bacher U, Haferlach T, Kern W, et al. Conventional cytogenetics of myeloproliferative diseases other than CML contributes valid information. Ann Hematol. 2005;84:250.

    Article  PubMed  Google Scholar 

  60. Najfeld V. Conventional and molecular cytogenetics of Ph-negative chronic myeloproliferative disorders. In: Tefferi A, Silver R, editors. Myeloproliferative disorders: molecular pathogenesis and practice in the JAK2 mutations era. New York: Informa Healthcare; 2007. p. 51.

    Google Scholar 

  61. Kamath A, Tara H, Xiang B, Bajaj R, He W, Li P. Double-minute MYC amplification and deletion of MTAP, CDKN2A, CDKN2B, and ELAVL2 in an acute myeloid leukemia characterized by oligonucleotide-array comparative genomic hybridization. Cancer Genet Cytogenet. 2008;183(2):117–20.

    Article  PubMed  CAS  Google Scholar 

  62. O’Malley F, Rayeroux K, Cole-Sinclair M, Tong M, Campbell LJ. MYC amplification in two further cases of acute myeloid leukemia with trisomy 4 and double minute chromosomes. Cancer Genet Cytogenet. 1999;109(2):123–5.

    Article  PubMed  Google Scholar 

  63. Michalová K, Cermák J, Brezinová J, Zemanová Z. Double minute chromosomes in a patient with myelodysplastic syndrome transforming into acute myeloid leukemia. Cancer Genet Cytogenet. 1999;109(1):76–8.

    Article  PubMed  Google Scholar 

  64. Ariyama Y, Fukuda Y, Okuno Y, Seto M, Date K, Abe T, Nakamura Y, Inazawa J. Amplification on double-minute chromosomes and partial-tandem duplication of the MLL gene in leukemic cells of a patient with acute myelogenous leukemia. Genes Chromosomes Cancer. 1998;23(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  65. Herry A, Douet-Guilbert N, Guéganic N, Morel F, Le Bris MJ, Berthou C, De Braekeleer M. Del(5q) and MLL amplification in homogeneously staining region in acute myeloblastic leukemia: a recurrent cytogenetic association. Ann Hematol. 2006;85(4):244–9.

    Article  PubMed  Google Scholar 

  66. Vazquez I, Lahortiga I, Agirre X, Larrayoz MJ, Vizmanos JL, Ardanaz MT, Zeleznik-Le NJ, Calasanz MJ, Odero MD. Cryptic ins(2;11) with clonal evolution showing amplification of 11q23-q25 either on hsr(11) or on dmin, in a patient with AML-M2. Leukemia. 2004;18(12):2041–4.

    Article  PubMed  CAS  Google Scholar 

  67. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumors of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.

    Google Scholar 

  68. Raskind WH, Tirumali N, Jacobson R, et al. Evidence for a multistep pathogenesis of myelodysplastic anemia. Blood. 1984;63: 1318.

    PubMed  CAS  Google Scholar 

  69. Tiu R, Gondek L, O’Keefe C, Macijewski JP. Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia. 2007;1:10.

    Google Scholar 

  70. Heaney ML, Golde DW. Myelodysplasia. N Engl J Med. 1999;340:1649.

    Article  PubMed  CAS  Google Scholar 

  71. Asimakopolous FA, Holloway TL, Nacheva EP, et al. Detection of chromosome 20q deletions in bone marrow metaphases but not peripheral blood granulocytes in patients with myeloproliferative disorders and myelodysplastic syndromes. Blood. 1994;87:1561.

    Google Scholar 

  72. Nilsson L, Astrand-Grundstrom I, Arvidsson I, et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood. 2000;96:2012.

    PubMed  CAS  Google Scholar 

  73. Van den Berghe H, Michaux L. 5q-, twenty-five years later: a synopsis. Cancer Genet Cytogenet. 1997;94:1.

    Article  PubMed  Google Scholar 

  74. Lezon-Geyda K, Najfeld V, Johnson EM. Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome and progression to acute myelogenous leukemia. Leukemia. 2001; 15:954.

    Article  PubMed  CAS  Google Scholar 

  75. Giagounidis AAN, Germing U, Haase S, et al. Clinical, morphological, cytogenetic and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia. 2004;18:113.

    Article  PubMed  CAS  Google Scholar 

  76. Rubin CM, Arthur DC, Woods WG, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia in children: correlation between chromosomal abnormalities and prior therapy. Blood. 1991;78:2982.

    PubMed  CAS  Google Scholar 

  77. Larson RA, Le Beau MM. Therapy-related myeloid leukaemia: a model for leukemogenesis in humans. Chem Biol Interact. 2005;30:187.

    Article  CAS  Google Scholar 

  78. Smith SM, Le Beau MM, Huo D, et al. Clinical cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: The University of Chicago series. Blood. 2003;102:43.

    Article  PubMed  CAS  Google Scholar 

  79. Bloomfield CD, Archer KJ, Mrozek K, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer. 2002;33:362.

    Article  PubMed  Google Scholar 

  80. Boultwood J, Lewis S, Wainscoat JS. The 5q-syndrome. Blood. 1994;84:3253.

    PubMed  CAS  Google Scholar 

  81. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079.

    PubMed  CAS  Google Scholar 

  82. Haase D, Estey EH, Steidl C, et al. Multivariate evaluation of the prognostic and therapeutic relevance of cytogenetics in a merged European-American cohort of 3680 patients with MDS. Blood. 2007;110:247.

    Article  CAS  Google Scholar 

  83. Giagounidis AAN, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res. 2006;12:5.

    Article  PubMed  CAS  Google Scholar 

  84. Nimer SD. Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol. 2006;24:2576.

    Article  PubMed  CAS  Google Scholar 

  85. Pederson B. 5q-survival: importance of gender and deleted 5q bands and survival analysis based on 324 published cases. Leuk Lymphoma. 1998;31:325.

    Google Scholar 

  86. Soenen V, Preudhomme C, Roumier C, et al. 17p deletion in acute myeloid leukemia and myelodysplastic syndrome. Analysis of breakpoints and deleted segments by fluorescence in situ. Blood. 1998;91:1008.

    PubMed  CAS  Google Scholar 

  87. Pozdnyakova O, Miron PM, Tang G, Walter O, Raza A, Woda B, Wang SA. Cytogenetic abnormalities in a series of 1,029 patients with primary myelodysplastic syndromes: a report from the US with a focus on some undefined single chromosomal abnormalities. Cancer. 2008;113:3331–40.

    Article  PubMed  Google Scholar 

  88. Le Beau MM, Espinoza III R, Davis EM, et al. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood. 1996;88:1930.

    PubMed  Google Scholar 

  89. Liang H, Fairman J, Claxton DF, et al. Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc Natl Acad Sci USA. 1998;95:3781.

    Article  PubMed  CAS  Google Scholar 

  90. Brezinová J, Zemanová Z, Ransdorfová S, Pavlistová L, Babická L, Housková L, et al. Structural aberrations of chromosome 7 revealed by a combination of molecular cytogenetic techniques in myeloid malignancies. Cancer Genet Cytogenet. 2007;173:10–6.

    Article  PubMed  CAS  Google Scholar 

  91. McKenna RW. Myelodysplasia and myeloproliferative disorders in children. Am J Clin Pathol. 2004;122:58–69.

    Google Scholar 

  92. Carroll WL, Morgan R, Glader BE. Childhood bone marrow monosomy 7 syndrome: a familial disorder? J Pediat. 1985;107: 578–80.

    Article  PubMed  CAS  Google Scholar 

  93. Hasle H, Alonzo TA, Auvrignon A, Behar C, Chang M, Creutzig U, et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood. 2007;109:4641–7.

    Article  PubMed  CAS  Google Scholar 

  94. Minelli A, Maserati E, Giudici G, Tosi S, Olivieri C, Bonvini L, et al. Familial partial monosomy 7 and myelodysplasia: different parental origin of the monosomy 7 suggests action of a mutator gene. Cancer Genet Cytogenet. 2001;124:147–51.

    Article  PubMed  CAS  Google Scholar 

  95. Porta G, Maserati E, Mattaruchi E, et al. Monosomy 7 in myeloid malignancies, parental origin and monitoring by real-time quantitative PCR. Leukemia. 2007;8:1833.

    Article  CAS  Google Scholar 

  96. Huret JL. +8 or trisomy 8. Atlas Genet Cytogenet Oncol Haematol. 2007. URL: http://AtlasGeneticsOncology.org/Anomalies/tri8ID1017.html. Accessed 27 July 2010.

  97. Paulsson K, Johansson B. Trisomy 8 as the sole chromosomal aberration in acute myeloid leukemia and myelodysplastic syndromes. Pathol Biol. 2007;55:37–48.

    Article  PubMed  CAS  Google Scholar 

  98. Westwood NB, Gruszka-Westwood AM, Pearson CE, et al. The incidence of trisomy 8, trisomy 9 and D20S109 deletion in polycythemia vera: an analysis of blood granulocytes using interphase fluorescence in situ hybridization. Br J Haematol. 2000;110:839.

    Article  PubMed  CAS  Google Scholar 

  99. Beyer V, Mühlematter D, Parlier V, Cabrol C, Bougeon-Mamin S, Solenthaler M, et al. Polysomy 8 defines a clinico-cytogenetic entity representing a subset of myeloid hematologic malignancies associated with a poor prognosis: report on a cohort of 12 patients and review of 105 published cases. Cancer Genet Cytogenet. 2005;160:97–119.

    Article  PubMed  CAS  Google Scholar 

  100. Lahortiga I, Vazquez I, Agirre X, et al. Molecular heterogeneity in AML/MDS patients with 3q21q26 rearrangements. Genes Chromosomes Cancer. 2004;40:179.

    Article  PubMed  CAS  Google Scholar 

  101. Poppe B, Dastugue N, Speleman F. 3q rearrangements in myeloid malignancies. Atlas Genet Cytogenet Oncol Haematol. 2003. URL: http://AtlasGeneticsOncology.org/Anomalies/3qrearrmyeloID1125.html. Accessed 15 Sept 2010.

  102. Huret JL. 3q21q26 rearrangements in treatment related leukemia. Atlas Genet Cytogenet Oncol Haematol. 2005. URL: http://AtlasGeneticsOncology.org/Anomalies/3q21q26TreatRelLeukID1236.html. Accessed 15 Sept 2010.

  103. Fontasch C, Gudar H, Lengfelder E, et al. Correlation of cytogenetic findings with clinical features in 18 patients with inv(3)(21q26) to t(3;3)(q21;q26). Leukemia. 1994;8:1318.

    Google Scholar 

  104. Morishita K, Parganas E, William CL, et al. Activation of EVI1 gene expression in human acute myelogenous leukemia by translocation spanning 300–400 kilobases on chromosome band 3q26. Proc Natl Acad Sci USA. 1994;89:3937.

    Article  Google Scholar 

  105. Poppe B, Dastugue N, Vadesopelle J, et al. EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26. Genes Chromosomes Cancer. 2006;45:349.

    Article  PubMed  CAS  Google Scholar 

  106. Martinelli G, Ottaviani F, Buonamici S, et al. Associations of 3q21q26 syndrome with different RPNI/EVI1 fusion transcripts. Haematologica. 2003;88:1221.

    PubMed  CAS  Google Scholar 

  107. Meloni-Ehrig AM. dic(17;20)(p11.2;q11.2). Atlas Genet Cytogenet Oncol Haematol. 2008. URL: http://AtlasGeneticsOncology.org/Anomalies/dic1720p11q11ID1485.html. Accessed 15 Sept 2010.

  108. Merlat A, Lai JL, Sterkers Y, Demory JL, Bauters F, Preudhomme C, Fenaux P. Therapy-related myelodysplastic syndrome and acute myeloid leukemia with 17p deletion. A report on 25 cases. Leukemia. 1999;13:250–7.

    Article  PubMed  CAS  Google Scholar 

  109. Fenaux P, Collyn d’Hooghe M, Jonveaux P, Lai JL, Bauters F, Loucheux MH, Kerckaert JP. Rearrangement and expression of the p53 gene in myelodysplastic syndrome and acute myeloid leukemia. Nouv Rev Fr Hematol. 1990;32:341–4.

    PubMed  CAS  Google Scholar 

  110. Stone JF, Sandberg AA. Sex chromosome aneuploidy and aging. Mutat Res. 1995;338:107–13.

    Article  PubMed  CAS  Google Scholar 

  111. Huh J, Moon H, Chung WS. Incidence and clinical significance of sex chromosome losses in bone marrow of patients with hematologic diseases. Korean J Lab Med. 2007;27:56–61.

    Article  PubMed  Google Scholar 

  112. Wiktor A, Rybicki BA, Piao ZS, Shurafa M, Barthel B, Maeda K, Van Dyke DL. Clinical significance of Y chromosome loss in hematologic disease. Genes Chromosomes Cancer. 2000;27:11–6.

    Article  PubMed  CAS  Google Scholar 

  113. Abruzzese E, Rao PN, Slatkoff M, Cruz J, Powell BL, Jackle B, Pettenati MJ. Monosomy X as a recurring sole cytogenetic abnormality associated with myelodysplastic diseases. Cancer Genet Cytogenet. 1997;93:140–6.

    Article  PubMed  CAS  Google Scholar 

  114. Smith A, Watson N, Sharma P. Frequency of trisomy 15 and loss of the Y chromosome in adult leukemia. Cancer Genet Cytogenet. 1999;114:108–11.

    Article  PubMed  CAS  Google Scholar 

  115. Sinclair EJ, Potter AM, Watmore AE, Fitchett M, Ross F. Trisomy 15 associated with loss of the Y chromosome in bone marrow: a possible new aging effect. Cancer Genet Cytogenet. 1998;105:20–3.

    Article  PubMed  CAS  Google Scholar 

  116. Hanson CA, Steensma DP, Hodnefield JM, Nguyen PL, Hoyer JD, Viswanatha DS, Zou Y, Knudson RA, Van Dyke DL, Ketterling RP. Isolated trisomy 15: a clonal chromosome abnormality in bone marrow with doubtful hematologic significance. Am J Clin Pathol. 2008;129:478–85.

    Article  PubMed  Google Scholar 

  117. Morel F, Le Bris MJ, Herry A, Morice P, De Braekeleer M. Trisomy 15 as the sole abnormality in myelodysplastic syndromes: case report and review of the literature. Leuk Lymphoma. 2003;44:549–51.

    Article  PubMed  Google Scholar 

  118. Xu W, Li JY, Liu Q, Zhu Y, Pan JL, Qiu HR, Xue YQ. Multiplex fluorescence in situ hybridization in identifying chromosome involvement of complex karyotypes in de novo myelodysplastic syndromes and acute myeloid leukemia. Int J Lab Hematol. 2010;32:86–95.

    Article  Google Scholar 

  119. Cherry AM, Brockman SR, Paternoster SF, Hicks GA, Neuberg D, Higgins RR, Bennett JM, Greenberg PL, Miller K, Tallman MS, Rowe J, Dewald GW. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: an Eastern Cooperative Oncology Group (ECOG) study. Leuk Res. 2003;27:1085–90.

    Article  PubMed  CAS  Google Scholar 

  120. Costa D, Valera S, Carrió A, Arias A, Muñoz C, Rozman M, Belkaid M, Coutinho R, Nomdedeu B, Campo E. Do we need to do fluorescence in situ hybridization analysis in myelodysplastic syndromes as often as we do? Leuk Res. 2010;34:1437–41.

    Article  PubMed  Google Scholar 

  121. Raskind WH, Steinmann L, Najfeld V. Clonal development of myeloproliferative disorders: clues to hematopoietic differentiation and multistep pathogenesis of cancer. Leukemia. 1998;12:108.

    Article  PubMed  CAS  Google Scholar 

  122. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006;355:2452.

    Article  PubMed  CAS  Google Scholar 

  123. Valent P. Pathogenesis, classification, and therapy of eosinophilia and eosinophil disorders. Blood Rev. 2009;23:157–65.

    Article  PubMed  CAS  Google Scholar 

  124. De Keersmaecker K, Cools J. Chronic myeloproliferative disorders: a tyrosine kinase tale. Leukemia. 2006;20:200.

    Article  PubMed  CAS  Google Scholar 

  125. Bench AJ, Nacheva EP, Champion KM, Green AR. Molecular genetics and cytogenetics of myeloproliferative disorders. Baillieres Clin Haematol. 1998;11:819–48.

    Article  PubMed  CAS  Google Scholar 

  126. Djordjević V, Dencić-Fekete M, Jovanović J, Drakulić D, Stevanović M, Janković G, Gotić M. Pattern of trisomy 1q in hematological malignancies: a single institution experience. Cancer Genet Cytogenet. 2008;186(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  127. Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia. Clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977;63:125.

    Article  PubMed  CAS  Google Scholar 

  128. Fialkow PJ, Martin PJ, Najfeld V, et al. Evidence for multistep pathogenesis of chronic myelogenous leukemia. Blood. 1981;58:158.

    PubMed  CAS  Google Scholar 

  129. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290.

    Article  PubMed  CAS  Google Scholar 

  130. Goldman JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47:302–11.

    Article  PubMed  CAS  Google Scholar 

  131. Grofen J, Stephenson JR, Heisterkamp N, et al. Philadelphia chromosome breakpoints are clustered within a limited region, bcr, or chromosome. Cell. 1984;36:93.

    Article  Google Scholar 

  132. Heisterkamp N, Stam K, Groffen J, et al. Structural organization of the Ph′ gene and its role in the Ph translocation. Nature. 1985;315:758.

    Article  PubMed  CAS  Google Scholar 

  133. Score J, Calasanz MJ, Ottman O, Pane F, Yeh RF, Sobrinho-Simões MA, Kreil S, Ward D, Hidalgo-Curtis C, Melo JV, Wiemels J, Nadel B, Cross NC, Grand FH. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24:1742–50.

    Article  PubMed  CAS  Google Scholar 

  134. Melo JV. BCR-ABL gene variants. Baillieres Clin Haematol. 1997;10:203–22.

    Article  PubMed  CAS  Google Scholar 

  135. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120:2254–64.

    Article  PubMed  CAS  Google Scholar 

  136. Hagemeijer A, Buijs A, Smith E, et al. Translocation of BCR to chromosome 9: a new cytogenetic variant detected by FISH in two Ph-negative, BCR-ABL-positive patients with chronic myelogenous leukemia. Genes Chromosomes Cancer. 1993;8:237.

    Article  PubMed  CAS  Google Scholar 

  137. Nacheva E, Holloway VT, Brown K, et al. Philadelphia negative chronic myelogenous leukemia: detection by FISH of BCR-ABL fusion gene localized either to chromosome 9 or chromosome 22. Br J Haematol. 1993;87:409.

    Article  Google Scholar 

  138. Brunel V, Sainity D, Costello R, et al. Translocation of BCR to chromosome 9 in a Philadelphia negative chronic myeloid leukemia. Cancer Genet Cytogenet. 1995;85:82.

    Article  PubMed  CAS  Google Scholar 

  139. Karbasian Esfahani M, Morris EL, Dutcher JP, Wiernik PH. Blastic phase of chronic myelogenous leukemia. Curr Treat Options Oncol. 2006;7:189–99.

    Article  PubMed  Google Scholar 

  140. Wang Y, Hopwood VL, Hu P, Lennon A, Osterberger J, Glassman A. Determination of secondary chromosomal aberrations of chronic myelocytic leukemia. Cancer Genet Cytogenet. 2004;153:53–6.

    Article  PubMed  CAS  Google Scholar 

  141. Adamson JW, Fialkow PJ, Murphy S, et al. Polycythemia vera: stem cell and probable clonal origin of the disease. N Engl J Med. 1976;295:913.

    Article  PubMed  CAS  Google Scholar 

  142. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia Vera. Nature. 2005;434:1144.

    Article  PubMed  CAS  Google Scholar 

  143. Rumi E, Elena C, Passamonti F. Mutational status of myeloproliferative neoplasms. Crit Rev Eukaryot Gene Expr. 2010;20:61–76.

    Article  PubMed  CAS  Google Scholar 

  144. Guglielmelli P, Vannucchi AM. Recent advances in diagnosis and treatment of chronic myeloproliferative neoplasms. F1000 Med Rep. 2010;2.pii:16.

    Google Scholar 

  145. Andrieux J, Demory JL. Karyotype and molecular cytogenetics studies in polycythemia vera. Curr Hematol Rep. 2005;4:224.

    PubMed  CAS  Google Scholar 

  146. Chen Z, Notohamiprodjom M, Guan X-Y, et al. Gain of 9p in the pathogenesis of polycythemia vera. Genes Chromosomes Cancer. 1998;22:321.

    Article  PubMed  CAS  Google Scholar 

  147. Kralovics R, Guan Y, Prchlar JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol. 2002;30:229.

    Article  PubMed  CAS  Google Scholar 

  148. Bacher U, Haferlach T, Schoch C. Gain of 9p due to an unbalanced rearrangement der(9;18): a recurrent clonal abnormality in chronic myeloproliferative disorders. Cancer Genet Cytogenet. 2005;160:179–83.

    Article  PubMed  CAS  Google Scholar 

  149. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M, Skoda RC. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  PubMed  CAS  Google Scholar 

  150. Swolin B, Weinfeld A, Westin J. Trisomy 1q in polycythemia vera and its relation to disease transition. Am J Hematol. 1986;22:155–67.

    Article  PubMed  CAS  Google Scholar 

  151. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, Roncoroni E, Astori C, Merli M, Boggi S, Pascutto C, Lazzarino M, Cazzola M. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24:1574–9.

    Article  PubMed  CAS  Google Scholar 

  152. Passamonti F, Rumi E, Arcaini L, Castagnola C, Lunghi M, Bernasconi P, Giovanni Della Porta M, Columbo N, Pascutto C, Cazzola M, Lazzarino M. Leukemic transformation of polycythemia vera: a single center study of 23 patients. Cancer. 2005;104:1032–6.

    Article  PubMed  Google Scholar 

  153. Mavrogianni D, Viniou N, Michali E, Terpos E, Meletis J, Vaiopoulos G, Madzourani M, Pangalis G, Yataganas X, Loukopoulos D. Leukemogenic risk of hydroxyurea therapy as a single agent in polycythemia vera and essential thrombocythemia: N- and K-ras mutations and microsatellite instability in chromosomes 5 and 7 in 69 patients. Int J Hematol. 2002;75:394–400.

    Article  PubMed  CAS  Google Scholar 

  154. Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia. A clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood. 1978;51:189.

    PubMed  CAS  Google Scholar 

  155. Wadleigh M, Tefferi A. Classification and diagnosis of myeloproliferative neoplasms according to the 2008 World Health Organization criteria. Int J Hematol. 2010;91:174–9.

    Article  PubMed  Google Scholar 

  156. Kilpivaara O, Levine RL. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia. 2008;22:1813–7.

    Article  PubMed  CAS  Google Scholar 

  157. Tefferi A, Dingli D, Li C-Y, Dewald GW. Prognostic diversity among cytogenetics abnormalities in myelofibrosis with myeloid metaplasia. Cancer. 2005;104:1656.

    Article  PubMed  CAS  Google Scholar 

  158. Strasser-Weippl K, Steurer M, Kees M, et al. Prognostic relevance of cytogenetics determined by fluorescent in situ hybridization in patients having myelofibrosis with myeloid metaplasia. Cancer. 2006;107:2801.

    Article  PubMed  CAS  Google Scholar 

  159. Millecker L, Lennon PA, Verstovsek S, Barkoh B, Galbincea J, Hu P, Chen SS, Jones D. Distinct patterns of cytogenetic and clinical progression in chronic myeloproliferative neoplasms with or without JAK2 or MPL mutations. Cancer Genet Cytogenet. 2010;197:1–7.

    Article  PubMed  CAS  Google Scholar 

  160. Sanchez S, Ewton A. Essential thrombocythemia: a review of diagnostic and pathologic features. Arch Pathol Lab Med. 2006;130:1144–50.

    PubMed  Google Scholar 

  161. Levine RL, Heaney M. New advances in the pathogenesis and therapy of essential thrombocythemia. Hematol Am Soc Hematol Educ Program. 2008:76–82.

    Google Scholar 

  162. Sever M, Kantarjian H, Pierce S, Jain N, Estrov Z, Cortes J, Verstovsek S. Cytogenetic abnormalities in essential thrombocythemia at presentation and transformation. Int J Hematol. 2009;90:522–5.

    Article  PubMed  Google Scholar 

  163. Oliver JW, Deol I, Morgan DL, Tonk VS. Chronic eosinophilic leukemia and hypereosinophilic syndromes. Proposal for classification, literature review, and report of a case with a unique chromosomal abnormality. Cancer Genet Cytogenet. 1998;107:111–7.

    Article  PubMed  CAS  Google Scholar 

  164. Loules G, Kalala F, Giannakoulas N, Papadakis E, Matsouka P, Speletas M. FIP1L1-PDGFRA molecular analysis in the differential diagnosis of eosinophilia. BMC Blood Disord. 2009;9:1.

    Article  PubMed  CAS  Google Scholar 

  165. Alvarez-Twose I, González de Olano D, Sánchez-Muñoz L, Matito A, Esteban-López MI, Vega A, et al. Clinical, biological, and molecular characteristics of clonal mast cell disorders presenting with systemic mast cell activation symptoms. J Allergy Clin Immunol. 2010;125:1269–78.

    Article  PubMed  CAS  Google Scholar 

  166. Brockow K, Metcalfe DD. Mastocytosis. Chem Immunol Allergy. 2010;95:110–24.

    Article  PubMed  CAS  Google Scholar 

  167. Yoshida C, Takeuchi M, Tsuchiyama J, Sadahira Y. Successful treatment of KIT D816V-positive, imatinib-resistant systemic mastocytosis with interferon-alpha. Intern Med. 2009;48:1973–8.

    Article  PubMed  Google Scholar 

  168. Yamada Y, Cancelas JA. FIP1L1/PDGFR alpha-associated systemic mastocytosis. Int Arch Allergy Immunol. 2010;152:101–5.

    Article  PubMed  CAS  Google Scholar 

  169. Fritsche-Polanz R, Fritz M, Huber A, Sotlar K, Sperr WR, Mannhalter C, Födinger M, Valent P. High frequency of concomitant mastocytosis in patients with acute myeloid leukemia exhibiting the transforming KIT mutation D816V. Mol Oncol. 2010;4: 335–46.

    Article  PubMed  CAS  Google Scholar 

  170. Elliott MA. Chronic neutrophilic leukemia and chronic myelomonocytic leukemia: WHO defined. Best Pract Res Clin Haematol. 2006;19:571–93.

    Article  PubMed  Google Scholar 

  171. Orazi A, Cattoretti G, Sozzi G. A case of chronic neutrophilic leukemia with trisomy 8. Acta Haematol. 1989;81:148–51.

    Article  PubMed  CAS  Google Scholar 

  172. Takamatsu Y, Kondo S, Inoue M, Tamura K. Chronic neutrophilic leukemia with dysplastic features mimicking myelodysplastic syndromes. Int J Hematol. 1996;63:65–9.

    Article  PubMed  CAS  Google Scholar 

  173. Haskovec C, Ponzetto C, Polák J, Maritano D, Zemanová Z, Serra A, Michalová K, Klamová H, Cermák J, Saglio G. P230 BCR/ABL protein may be associated with an acute leukaemia phenotype. Br J Haematol. 1998;103:1104–8.

    Article  PubMed  CAS  Google Scholar 

  174. Tefferi A. Molecular drug targets in myeloproliferative neoplasms: mutant ABL1, JAK2, MPL, KIT, PDGFRA, PDGFRB and FGFR1. J Cell Mol Med. 2009;13:215–37.

    Article  PubMed  CAS  Google Scholar 

  175. Mozziconacci MJ, Carbuccia N, Prebet T, Charbonnier A, Murati A, Vey N, Chaffanet M, Birnbaum D. Common features of myeloproliferative disorders with t(8;9)(p12;q33) and CEP110-FGFR1 fusion: report of a new case and review of the literature. Leuk Res. 2008;32:1304–8.

    Article  PubMed  CAS  Google Scholar 

  176. Han X, Medeiros LJ, Abruzzo LV, Jones D, Lin P. Chronic myeloproliferative diseases with the t(5;12)(q33;p13): clonal evolution is associated with blast crisis. Am J Clin Pathol. 2006;125(1): 49–56.

    PubMed  Google Scholar 

  177. Shin J, Kim M, Kim DB, Yeom JO, Lee HJ, Cho SG. Sustained response to low-dose imatinib mesylate in a patient with chronic myelomonocytic leukemia with t(5;12)(q33;p13). Acta Haematol. 2008;119:57–9.

    Article  PubMed  Google Scholar 

  178. Fink SR, Belongie KJ, Paternoster SF, Smoley SA, Pardanani AD, Tefferi A, Van Dyke DL, Ketterling RP. Validation of a new three-color fluorescence in situ hybridization (FISH) method to detect CHIC2 deletion, FIP1L1/PDGFRA fusion and PDGFRA translocations. Leuk Res. 2009;33:843–6.

    Article  PubMed  CAS  Google Scholar 

  179. Steer EJ, Cross NC. Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor Beta. Acta Haematol. 2002;107:113–22.

    Article  PubMed  CAS  Google Scholar 

  180. Nand R, Bryke C, Kroft SH, Divgi A, Bredeson C, Atallah E. Myeloproliferative disorder with eosinophilia and ETV6-ABL gene rearrangement: efficacy of second-generation tyrosine kinase inhibitors. Leuk Res. 2009;33:1144–6.

    Article  PubMed  CAS  Google Scholar 

  181. Griesinger F, Hennig H, Hillmer F, et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer. 2005;44:329.

    Article  PubMed  CAS  Google Scholar 

  182. Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCMI to JAK2. Cancer Res. 2005;65:2662.

    Article  PubMed  CAS  Google Scholar 

  183. Hall J, Foucar K. Diagnosing myelodysplastic/myeloproliferative neoplasms: laboratory testing strategies to exclude other disorders. Int J Lab Hematol. 2010;32:559–71.

    Article  PubMed  CAS  Google Scholar 

  184. Reiter A, Invernizzi R, Cross NC, Cazzola M. Molecular basis of myelodysplastic/myeloproliferative neoplasms. Haematologica. 2009;94:1634–8.

    Article  PubMed  CAS  Google Scholar 

  185. Bowen DT. Chronic myelomonocytic leukemia: lost in classification? Hematol Oncol. 2005;23:26–33.

    Article  PubMed  Google Scholar 

  186. Golub TR, Barker GF, Lovett M, Gilliland DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77:307.

    Article  PubMed  CAS  Google Scholar 

  187. Nishida H, Ueno H, Park JW, Yano T. Isochromosome i(17q) as a sole cytogenetic abnormality in a case of leukemic transformation from myelodysplastic syndrome (MDS)/myeloproliferative diseases (MPD). Leuk Res. 2008;32:1325–7.

    Article  PubMed  CAS  Google Scholar 

  188. Pinheiro RF, Chauffaille MdeL, Silva MR. Isochromosome 17q in MDS: a marker of a distinct entity. Cancer Genet Cytogenet. 2006;166:189–90.

    Article  PubMed  CAS  Google Scholar 

  189. Groupe Français de Cytogénétique Hématologique. Cytogenetics of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1986;21:11–30.

    Article  Google Scholar 

  190. Tefferi A, Skoda R, Vardiman JW. Myeloproliferative neoplasms: contemporary diagnosis using histology and genetics. Nat Rev Clin Oncol. 2009;6:627–37.

    Article  PubMed  CAS  Google Scholar 

  191. Elder PT, McMullin MF, Humphreys MW, Hamilton J, McGrattan P. The finding of a reciprocal whole-arm translocation t(X;12)(p10;p10) in association with atypical chronic myeloid leukaemia. Med Oncol. 2010;27:760–2.

    Article  PubMed  CAS  Google Scholar 

  192. Kapaun P, Kabisch H, Held KR, Walter TA, Hegewisch S, Zander AR. Atypical chronic myelogenous leukemia in a patient with trisomy 8 mosaicism syndrome. Ann Hematol. 1993;66: 57–8.

    Article  PubMed  CAS  Google Scholar 

  193. Fend F, Horn T, Koch I, Vela T, Orazi A. Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res. 2008;32:1931–5.

    Article  PubMed  CAS  Google Scholar 

  194. Niemeyer CM, Locatelli F. Chronic myeloproliferative disorders. In: Pui C-H, editor. Childhood leukemias. 2nd ed. New York: Cambridge University Press; 2006. p. 579.

    Google Scholar 

  195. Hasle H, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, et al. European Working Group on MDS in Childhood (EWOG-MDS). Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. Leukemia. 1999;13: 376–85.

    Google Scholar 

  196. Betz BL, Hess JL. Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med. 2010;134:1427–33.

    PubMed  Google Scholar 

  197. Rubnitz JE, Gibson B, Smith FO. Acute myeloid leukemia. Hematol Oncol Clin North Am. 2010;24:35–63.

    Article  PubMed  Google Scholar 

  198. Eden T. Aetiology of childhood leukaemia. Cancer Treat Rev. 2010;36:286–97.

    Article  PubMed  CAS  Google Scholar 

  199. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. Blood. 1998;92:2322.

    PubMed  CAS  Google Scholar 

  200. Marcucci G, Mrozek K, Ryppert AS, et al. Abnormal cytogenetics at date of morphologic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: results from cancer and leukemia group B study 8461. J Clin Oncol. 2004;15:2410.

    Article  Google Scholar 

  201. Bloomfield CD, Mrozek K, Caliguri MA. Cancer and Leukemia Group B correlative science committee: major accomplishments and future directions. Clin Cancer Res. 2006;12:3564.

    Article  Google Scholar 

  202. Ishikawa Y, Kiyoi H, Tsujimura A, Miyawaki S, Miyazaki Y, Kuriyama K, Tomonaga M, Naoe T. Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia. Eur J Haematol. 2009;83:90–8.

    Article  PubMed  CAS  Google Scholar 

  203. Paschka P. Core binding factor acute myeloid leukemia. Semin Oncol. 2008;35:410–7.

    Article  PubMed  CAS  Google Scholar 

  204. Klaus M, Haferlach T, Schnittger S, Kern W, Hiddemann W, Schoch C. Cytogenetic profile in de novo acute myeloid leukemia with FAB subtypes M0, M1, and M2: a study based on 652 cases analyzed with morphology, cytogenetics, and fluorescence in situ hybridization. Cancer Genet Cytogenet. 2004;155:47–56.

    Article  PubMed  CAS  Google Scholar 

  205. Huret JL. t(8;21)(q22;q22). Atlas Genet Cytogenet Oncol Haematol. 1997. URL: http://AtlasGeneticsOncology.org/Anomalies/t0821.html. Accessed 2 Nov 2010.

  206. Huret JL. t(8;21)(q22;q22) in treatment related leukemia. Atlas Genet Cytogenet Oncol Haematol. 2003. URL: http://AtlasGeneticsOncology.org/Anomalies/t0821q22q22TreatRelID1293.html. Accessed 2 Nov 2010.

  207. Bae SY, Kim JS, Ryeu BJ, Lee KN, Lee CK, Kim YK, et al. Acute myeloid leukemia (AML-M2) associated with variant t(8;21): report of three cases. Cancer Genet Cytogenet. 2010;199:31–7.

    Article  PubMed  CAS  Google Scholar 

  208. Al Bahar S, Adriana Z, Pandita R. A novel variant translocation t(6;8;21)(p22;q22;q22) leading to AML/ETO fusion in acute myeloid leukemia. Gulf J Oncolog. 2009;5:56–9.

    PubMed  Google Scholar 

  209. Tirado CA, Chena W, Valdez FJ, Henderson S, Smart RL, Doolittle J, et al. A cryptic t(1;21;8)(p36;q22;q22) in a case of acute myeloid leukemia with maturation. J Assoc Genet Technol. 2009;35:88–92.

    PubMed  Google Scholar 

  210. Kawakami K, Nishii K, Hyou R, Watanabe Y, Nakao M, Mitani H, et al. A case of acute myeloblastic leukemia with a novel variant of t(8;21)(q22;q22). Int J Hematol. 2008;87:78–82.

    Article  PubMed  CAS  Google Scholar 

  211. Ahmad F, Kokate P, Chheda P, Dalvi R, Das BR, Mandava S. Molecular cytogenetic findings in a three-way novel variant of t(1;8;21)(p35;q22;q22): a unique relocation of the AML1/ETO fusion gene 1p35 in AML-M2. Cancer Genet Cytogenet. 2008;180:153–7.

    Article  PubMed  CAS  Google Scholar 

  212. Udayakumar AM, Alkindi S, Pathare AV, Raeburn JA. Complex t(8;13;21)(q22;q14;q22)–a novel variant of t(8;21) in a patient with acute myeloid leukemia (AML-M2). Arch Med Res. 2008;39:252–6.

    Article  PubMed  CAS  Google Scholar 

  213. Choi J, Song J, Kim SJ, Choi JR, Kim SJ, Min YH, et al. Prognostic significance of trisomy 6 in an adult acute myeloid leukemia with t(8;21). Cancer Genet Cytogenet. 2010;202:141–3.

    Article  PubMed  CAS  Google Scholar 

  214. Lück SC, Russ AC, Du J, Gaidzik V, Schlenk RF, Pollack JR, et al. KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol. 2010;148:925–37.

    Article  PubMed  Google Scholar 

  215. Monma F, Nishii K, Shiga J, et al. Detection of CBFB/MYH fusion gene in de novo acute myeloid leukemia: a single institutional study of 224 Japanese AML patients. Leuk Res. 2007;31:471.

    Article  PubMed  CAS  Google Scholar 

  216. Shigesada K, van de Sluis B, Liu PP. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004;23:4297–307.

    Article  PubMed  CAS  Google Scholar 

  217. Hernández JM, González MB, Granada I, Gutiérrez N, Chillón C, Ramos F, et al. Detection of inv(16) and t(16;16) by fluorescence in situ hybridization in acute myeloid leukemia M4Eo. Haematologica. 2000;85:481–5.

    PubMed  Google Scholar 

  218. Andersen MK, Larson RA, Mauritzson N, Schnittger S, Jhanwar SC, Pedersen-Bjergaard J. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer. 2002;33:395–400.

    Article  PubMed  Google Scholar 

  219. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT, et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol. 2006;135:165–73.

    Article  PubMed  Google Scholar 

  220. Lo-Coco F, Ammatuna E. The biology of acute promyelocytic leukemia and its impact on diagnosis and treatment. Hematology Am Soc Hematol Educ Program. 2006:156–61.

    Google Scholar 

  221. Grignani F, Fagioli M, Alcalay M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood. 1994;83:10.

    PubMed  CAS  Google Scholar 

  222. Tirado CA, Jahn JA, Scheerle J, Eid M, Meister RJ, Christie RJ. Variant acute promyelocytic leukemia translocation (15;17) originating from two subsequent balanced translocations involving the same chromosomes 15 and 17 while preserving the PML/RARA fusion. Cancer Genet Cytogenet. 2005;161:70–3.

    Article  PubMed  CAS  Google Scholar 

  223. Kato T, Hangaishi A, Ichikawa M, Motokura T, Takahashi T, Kurokawa M. A new three-way variant t(15;22;17)(q22;q11.2;q21) in acute promyelocytic leukemia. Int J Hematol. 2009;89:204–8.

    Article  PubMed  Google Scholar 

  224. Jezísková I, Rázga F, Gazdová J, Doubek M, Jurcek T, Korístek Z, Mayer J, Dvoráková D. A case of a novel PML/RARA short fusion transcript with truncated transcription variant 2 of the RARA gene. Mol Diagn Ther. 2010;14:113–7.

    Article  PubMed  Google Scholar 

  225. Sirulnik A, Melnick A, Zelent A, Licht JD. Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract Res Clin Haematol. 2003;16:387–408.

    Article  PubMed  CAS  Google Scholar 

  226. Yin CC, Glassman AB, Lin P, Valbuena JR, Jones D, Luthra R, Medeiros LJ. Morphologic, cytogenetic, and molecular abnormalities in therapy-related acute promyelocytic leukemia. Am J Clin Pathol. 2005;123:840–8.

    Article  PubMed  Google Scholar 

  227. De Lourdes Chauffaille M, Borri D, Proto-Siqueira R, Moreira ES, Alberto FL. Acute promyelocytic leukemia with t(15;17): frequency of additional clonal chromosome abnormalities and FLT3 mutations. Leuk Lymphoma. 2008;49:2387–9.

    Article  PubMed  CAS  Google Scholar 

  228. DiMartino JF, Cleary ML. MLL rearrangements in hematological malignancies: lesions from clinical and biological studies. Br J Haematol. 1999;106:614.

    Article  PubMed  CAS  Google Scholar 

  229. Rubnitz JE, Raimondi SC, Tong X, Srivastava DK, Razzouk BI, Shurtleff SA, Downing JR, Pui CH, Ribeiro RC, Behm FG. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;1(20):2302–9.

    Article  Google Scholar 

  230. Krauter J, Wagner K, Schäfer I, Marschalek R, Meyer C, Heil G. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2009;27:3000–6.

    Article  PubMed  Google Scholar 

  231. Swansbury GJ, Slater R, Bain BJ, Moorman AV, Secker-Walker LM. Hematological malignancies with t(9;11)(p21-22;q23). a laboratory and clinical study of 125 cases. European 11q23 workshop participants. Leukemia. 1998;12:792–800.

    Article  PubMed  CAS  Google Scholar 

  232. Biggerstaff JS, Liu W, Slovak ML, Bobadilla D, Bryant E, Glotzbach C, Shaffer LG. A dual-color FISH assay distinguishes between ELL and MLLT1 (ENL) gene rearrangements in t(11;19)-positive acute leukemia. Leukemia. 2006;20:2046–50.

    Article  PubMed  CAS  Google Scholar 

  233. Martineau M, Berger R, Lillington DM, Moorman AV, Secker-Walker LM. The t(6;11)(q27;q23) translocation in acute leukemia: a laboratory and clinical study of 30 cases. EU concerted action 11q23 workshop participants. Leukemia. 1998;12:788–91.

    Article  PubMed  CAS  Google Scholar 

  234. Stasevich I, Utskevich R, Kustanovich A, Litvinko N, Savitskaya T, Chernyavskaya S, Saharova O, Aleinikova O. Translocation (10;11)(p12;q23) in childhood acute myeloid leukemia: incidence and complex mechanism. Cancer Genet Cytogenet. 2006;169:114–20.

    Article  PubMed  CAS  Google Scholar 

  235. Oancea C, Rüster B, Henschler R, Puccetti E, Ruthardt M. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia. 2010;24:1910–9.

    Article  PubMed  CAS  Google Scholar 

  236. Chi Y, Lindgren V, Quigley S, Gaitonde S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med. 2008;132:1835–7.

    PubMed  Google Scholar 

  237. Igarashi T, Shimizu S, Morishita K, Ohtsu T, Itoh K, Minami H, Fujii H, Sasaki Y, Mukai K. Acute myelogenous leukemia with monosomy 7, inv(3)(q21q26), involving activated EVI 1 gene occurring after a complete remission of lymphoblastic lymphoma: a case report. Jpn J Clin Oncol. 1998;28:688–95.

    Article  PubMed  CAS  Google Scholar 

  238. Dastugue N, Lafage-Pochitaloff M, Pages MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood. 2002;15:618.

    Article  CAS  Google Scholar 

  239. Oki Y, Kantarjian HM, Zhou X, et al. Adult acute megakaryocytic leukemia: an analysis of 37 patients treated at M.D. Anderson Cancer Center. Blood. 2006;107:880.

    Article  PubMed  CAS  Google Scholar 

  240. Massey GV, Zipursky A, Chang MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG-9481. Blood. 2006;107:4606.

    Article  PubMed  CAS  Google Scholar 

  241. Roy A, Roberts I, Norton A, Vyas P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol. 2009;147:3–12.

    Article  PubMed  CAS  Google Scholar 

  242. Bourquin JP, Subramanian A, Langebrake C, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA. 2006;103:3339.

    Article  PubMed  CAS  Google Scholar 

  243. Bullinger L, Dohner K, Bair E, et al. Use of gene-expressing profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605.

    Article  PubMed  CAS  Google Scholar 

  244. Radmacher C, Bagrintseva K, Vempati S, et al. Independent conformation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood. 2006;108:1677.

    Article  PubMed  CAS  Google Scholar 

  245. Baldus CD, Mrozek K, Marcucci G, Blommfield CD. Clinical outcome of de novo acute myeloid leukaemia patients with normal cytogenetics is affected by molecular genetic alterations: a concise review. Br J Haematol. 2007;137:387.

    Article  PubMed  CAS  Google Scholar 

  246. Miesner M, Haferlach C, Bacher U, Weiss T, Macijewski K, Kohlmann A, et al. Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS-related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: a comparison of 408 cases classified as “AML not otherwise specified” (AML-NOS) or “AML with myelodysplasia-related changes” (AML-MRC). Blood. 2010;116:2742–51.

    Article  PubMed  CAS  Google Scholar 

  247. Seok JH, Park J, Kim SK, Choi JE, Kim CC. Granulocytic sarcoma of the spine: MRI and clinical review. AJR Am J Roentgenol. 2010;194:485–9.

    Article  PubMed  Google Scholar 

  248. Zhang XH, Zhang R, Li Y. Granulocytic sarcoma of abdomen in acute myeloid leukemia patient with inv(16) and t(6;17) abnormal chromosome: case report and review of literature. Leuk Res. 2010;34:958–61.

    Article  PubMed  Google Scholar 

  249. Lee SG, Park TS, Cheong JW, Yang WI, Song J, et al. Preceding orbital granulocytic sarcoma in an adult patient with acute myelogenous leukemia with t(8;21): a case study and review of the literature. Cancer Genet Cytogenet. 2008;185:51–4. Erratum in: Cancer Genet Cytogenet 2008;187:59.

    Article  PubMed  CAS  Google Scholar 

  250. Douet-Guilbert N, Morel F, Le Bris MJ, Sassolas B, Giroux JD, De Braekeleer M. Rearrangement of MLL in a patient with congenital acute monoblastic leukemia and granulocytic sarcoma associated with a t(1;11)(p36;q23) translocation. Leuk Lymphoma. 2005;46:143–6.

    Article  PubMed  CAS  Google Scholar 

  251. Jegalian AG, Facchetti F, Jaffe ES. Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol. 2009;16:392–404.

    Article  PubMed  Google Scholar 

  252. Liang X, Graham DK. Natural killer cell neoplasms. Cancer. 2008;112:1425–36.

    Article  PubMed  Google Scholar 

  253. Rubnitz JE, Onciu M, Pounds S, Shurtleff S, Cao X, Raimondi SC, Behm FG, Campana D, Razzouk BI, Ribeiro RC, Downing JR, Pui CH. Acute mixed lineage leukemia in children: the experience of St Jude Children’s Research Hospital. Blood. 2009;113:5083–9.

    Article  PubMed  CAS  Google Scholar 

  254. Naghashpour M, Lancet J, Moscinski L, Zhang L. Mixed phenotype acute leukemia with t(11;19)(q23;p13.3)/MLL-MLLT1(ENL), B/T-lymphoid type: a first case report. Am J Hematol. 2010;85:451–4.

    PubMed  Google Scholar 

  255. Marcus R, Sweetenham JW, Williams ME, editors. Lymphoma: pathology, diagnosis and treatment. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  256. Pui C-H, editor. Childhood leukemias. 2nd ed. New York: Cambridge University Press; 2006.

    Google Scholar 

  257. Faderl S, O’Brien S, Pui CH, Stock W, Wetzler M, Hoelzer D, Kantarjian HM. Adult acute lymphoblastic leukemia: concepts and strategies. Cancer. 2010;116:1165–76.

    Article  PubMed  CAS  Google Scholar 

  258. Szczepański T, Harrison CJ, van Dongen JJ. Review. Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol. 2010;11:880–9.

    Article  PubMed  CAS  Google Scholar 

  259. Raimondi SC. Cytogenetics of acute leukemias. In: Pui C-H, editor. Childhood leukemias. 2nd ed. New York: Cambridge University Press; 2006. p. 235–71.

    Google Scholar 

  260. O’Leary M, Krailo M, Anderson JR, Reaman GH, Children’s Oncology Group. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s Oncology Group. Semin Oncol. 2008;35:484–93.

    Article  PubMed  Google Scholar 

  261. Ravandi F, Kebriaei P. Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:1043–63.

    Article  PubMed  Google Scholar 

  262. van Rhee F, Hochhaus A, Lin F, Melo JV, Goldman JM, Cross NC. p190 BCR-ABL mRNA is expressed at low levels in p210-positive chronic myeloid and acute lymphoblastic leukemias. Blood. 1996;87:5213–7.

    PubMed  Google Scholar 

  263. Lichty BD, Keating A, Callum J, Yee K, Croxford R, Corpus G, Nwachukwu B, Kim P, Guo J, Kamel-Reid S. Expression of p210 and p190 BCR-ABL due to alternative splicing in chronic myelogenous leukaemia. Br J Haematol. 1998;103:711–5.

    Article  PubMed  CAS  Google Scholar 

  264. Edelhäuser M, Raber W, Mitterbauer G, Mannhalter C, Lechner K, Fonatsch C. Variant intra Philadelphia translocation with rearrangement of BCR-ABL and ABL-BCR within the same chromosome in a patient with cALL. Cancer Genet Cytogenet. 2000;122:83–6.

    Article  PubMed  Google Scholar 

  265. Hirota M, Hidaka E, Ueno I, Ishikawa M, Asano N, Yamauchi K, Ishida F, Tozuka M, Katsuyama T. Novel BCR-ABL transcript containing an intronic sequence insert in a patient with Philadelphia-positive acute lymphoblastic leukaemia. Br J Haematol. 2000;110:867–70.

    Article  PubMed  CAS  Google Scholar 

  266. Zaccaria A, Testoni N, Valenti AM, Luatti S, Tonelli M, Marzocchi G, et al. GIMEMA Working Party on CML. Chromosome abnormalities additional to the Philadelphia chromosome at the diagnosis of chronic myelogenous leukemia: pathogenetic and prognostic implications. Cancer Genet Cytogenet. 2010;199:76–80.

    Google Scholar 

  267. Wetzler M, Dodge RK, Mrózek K, Stewart CC, Carroll AJ, Tantravahi R, et al. Additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a study of the Cancer and Leukaemia Group B. Br J Haematol. 2004;124:275–88.

    Article  PubMed  Google Scholar 

  268. De Braekeleer E, Basinko A, Douet-Guilbert N, Morel F, Le Bris MJ, Berthou C, et al. Cytogenetics in pre-B and B-cell acute lymphoblastic leukemia: a study of 208 patients diagnosed between 1981 and 2008. Cancer Genet Cytogenet. 2010;200:8–15.

    Article  PubMed  CAS  Google Scholar 

  269. Harrison CJ, Haas O, Harbott J, Biondi A, Stanulla M, Trka J, Izraeli S, Biology and Diagnosis Committee of International Berlin-Frankfürt-Münster study group. Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfürt-Münster study group. Br J Haematol. 2010;151:132–42.

    Article  PubMed  CAS  Google Scholar 

  270. Reichel M, Gillert E, Angermuller S, et al. Based distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene. 2001;20:2900.

    Article  PubMed  CAS  Google Scholar 

  271. Fu JF, Liang DC, Shih LY. Analysis of acute leukemias with MLL/ENL fusion transcripts: identification of two novel breakpoints in ENL. Am J Clin Pathol. 2007;127:24–30.

    Article  PubMed  CAS  Google Scholar 

  272. De Braekeleer E, Meyer C, Le Bris MJ, Douet-Guilbert N, Basinko A, Morel F, et al. Identification of a MLL-MLLT4 fusion gene resulting from a t(6;11)(q27;q23) presenting as a del(11q) in a child with T-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2010;51:1570–3.

    Article  PubMed  CAS  Google Scholar 

  273. Mansur MB, Emerenciano M, Splendore A, Brewer L, Hassan R, Pombo-de-Oliveira MS, Brazilian Collaborative Study Group of Infant Acute Leukemia. T-cell lymphoblastic leukemia in early childhood presents NOTCH1 mutations and MLL rearrangements. Leuk Res. 2010;34:483–6.

    Article  PubMed  CAS  Google Scholar 

  274. Barber KE, Harrison CJ, Broadfield ZJ, Stewart AR, Wright SL, Martineau M, Strefford JC, Moorman AV. Molecular cytogenetic characterization of TCF3 (E2A)/19p13.3 rearrangements in B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2007;46:478–86.

    Article  PubMed  CAS  Google Scholar 

  275. Forestier E, Johansson B, Gustafsson G, Borgström G, Kerndrup G, Johannsson J, Heim S. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. For the Nordic Society of Paediatric Haematology and Oncology (NOPHO) Leukaemia Cytogenetic Study Group. Br J Haematol. 2000;110:147–53.

    Article  PubMed  CAS  Google Scholar 

  276. Baudis M, Prima V, Tung YH, Hunger SP. ABCB1 over-expression and drug-efflux in acute lymphoblastic leukemia cell lines with t(17;19) and E2A-HLF expression. Pediatr Blood Cancer. 2006;47:757–64.

    Article  PubMed  Google Scholar 

  277. Shearer BM, Flynn HC, Knudson RA, Ketterling RP. Interphase FISH to detect PBX1/E2A fusion resulting from the der(19)t(1;19)(q23;p13.3) or t(1;19)(q23;p13.3) in paediatric patients with acute lymphoblastic leukaemia. Br J Haematol. 2005;129:45–52.

    Article  PubMed  CAS  Google Scholar 

  278. Heerema NA, Nachman JB, Sather HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 1999;94:4036.

    PubMed  CAS  Google Scholar 

  279. Nachman JR, Herema NA, Sather H, et al. Outcome of children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112.

    Article  PubMed  CAS  Google Scholar 

  280. Das PK, Sharma P, Koutts J, Smith A. Hypodiploidy of 37 chromosomes in an adult patient with acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2003;145:176–8.

    Article  PubMed  CAS  Google Scholar 

  281. Harrison CJ, Moorman AV, Broadfield ZJ, Cheung KL, Harris RL, Reza Jalali G, et al. Childhood and Adult Leukaemia Working Parties. Three distinct subgroups of hypodiploidy in acute lymphoblastic leukaemia. Br J Haematol. 2004;125:552–9.

    Google Scholar 

  282. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, Dastugue N, Schrappe M, Pui CH, Basso G, Silverman LB, Janka-Schaub GE. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.

    Article  PubMed  CAS  Google Scholar 

  283. Rachieru-Sourisseau P, Baranger L, Dastugue N, Robert A, Geneviève F, Kuhlein E, Chassevent A. DNA Index in childhood acute lymphoblastic leukaemia: a karyotypic method to validate the flow cytometric measurement. Int J Lab Hematol. 2010;32: 288–98.

    Article  PubMed  CAS  Google Scholar 

  284. Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2009;48: 637–60.

    Article  PubMed  CAS  Google Scholar 

  285. Tauro S, McMullan D, Griffiths M, Craddock C, Mahendra P. High-hyperdiploidy in Philadelphia positive adult acute lymphoblastic leukaemia: case-series and review of literature. Bone Marrow Transplant. 2003;31:763–6.

    Article  PubMed  CAS  Google Scholar 

  286. Mertens F, Johansson B, Mitelman F. Dichotomy of hyperdiploid acute lymphoblastic leukemia on the basis of the distribution of gained chromosomes. Cancer Genet Cytogenet. 1996;92:8–10.

    Article  PubMed  CAS  Google Scholar 

  287. Romana SP, Le Coniat M, Berger R. t(12;21): a new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer. 1994;9:186.

    Article  PubMed  CAS  Google Scholar 

  288. Forestier E, Andersen MK, Autio K, Blennow E, Borgström G, Golovleva I, et al. Cytogenetic patterns of ETV6/RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia: a Nordic series of 245 cases and review of the literature. Genes Chromosomes Cancer. 2007;46:440.

    Article  PubMed  CAS  Google Scholar 

  289. Attarbaschi A, Mann G, König M, Dworzak MN, Trebo MM, Mühlegger N, Gadner H, Haas OA, Austrian Berlin-Frankfurt-Münster cooperative study group. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia. 2004;18:1611–6.

    Article  PubMed  CAS  Google Scholar 

  290. Cave H, Cacheux V, Raynaud S, et al. ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia. 1997;11:1459.

    Article  PubMed  CAS  Google Scholar 

  291. De Braekeleer E, Férec C, De Braekeleer M. RUNX1 translocations in malignant hemopathies. Anticancer Res. 2009;29: 1031–7.

    PubMed  Google Scholar 

  292. McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Guo W, Loh ML, Smith MT. Prenatal origin of TEL-AML1-positive acute lymphoblastic leukemia in children born in California. Genes Chromosomes Cancer. 2003;37:36–43.

    Article  PubMed  CAS  Google Scholar 

  293. Hjalgrim LL, Madsen HO, Melbye M, Jørgensen P, Christiansen M, Andersen MT, et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer. 2002;87:994–9.

    Article  PubMed  CAS  Google Scholar 

  294. Moosavi SA, Sanchez J, Adeyinka A. Marker chromosomes are a significant mechanism of high-level RUNX1 gene amplification in hematologic malignancies. Cancer Genet Cytogenet. 2009;189:24–8.

    Article  PubMed  CAS  Google Scholar 

  295. Novara F, Beri S, Bernardo ME, Bellazzi R, Malovini A, Ciccone R, Cometa AM, Locatelli F, Giorda R, Zuffardi O. Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood. Hum Genet. 2009;126:511–20.

    Article  PubMed  CAS  Google Scholar 

  296. Usvasalo A, Ninomiya S, Räty R, Hollmén J, Saarinen-Pihkala UM, Elonen E, Knuutila S. Focal 9p instability in hematologic neoplasias revealed by comparative genomic hybridization and single-nucleotide polymorphism microarray analyses. Genes Chromosomes Cancer. 2010;49:309–18.

    PubMed  CAS  Google Scholar 

  297. Leblanc T, Derré J, Flexor M, Le Coniat M, Leroux D, Rimokh R, Larsen CJ, Berger R. FISH analysis of translocations involving the short arm of chromosome 9 in lymphoid malignancies. Genes Chromosomes Cancer. 1997;19:273–7.

    Article  PubMed  CAS  Google Scholar 

  298. Nahi H, Hägglund H, Ahlgren T, Bernell P, Hardling M, Karlsson K, Lazarevic VLj, Linderholm M, Smedmyr B, Aström M, Hallböök H. An investigation into whether deletions in 9p reflect prognosis in adult precursor B-cell acute lymphoblastic leukemia: a multi-center study of 381 patients. Haematologica. 2008;93(11):1734–8.

    Article  PubMed  Google Scholar 

  299. Heerema NA. 9p Rearrangements in ALL. Atlas Genet Cytogenet Oncol Haematol. 1999. URL: http://AtlasGeneticsOncology.org/Anomalies/9prearrALLID1156.html.

  300. Heerema NA, Maben KD, Bernstein J, Breitfeld PP, Neiman RS, Vance GH. Dicentric (9;20)(p11;q11) identified by fluorescence in situ hybridization in four pediatric acute lymphoblastic leukemia patients. Cancer Genet Cytogenet. 1996;92:111–5.

    Article  PubMed  CAS  Google Scholar 

  301. Lundin C, Heldrup J, Ahlgren T, Olofsson T, Johansson B. B-cell precursor t(8;14)(q11;q32)-positive acute lymphoblastic leukemia in children is strongly associated with Down syndrome or with a concomitant Philadelphia chromosome. Eur J Haematol. 2009;82:46–53.

    Article  PubMed  CAS  Google Scholar 

  302. Duro D, Bernard O, Della Valle V, Leblanc T, Berger R, Larsen CJ. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21-22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res. 1996;56:848–54.

    PubMed  CAS  Google Scholar 

  303. Wong KF, Kwong YL, Wong TK. Inversion 14q in acute lymphoblastic leukemia of B-lineage. Cancer Genet Cytogenet. 1995; 80:72–4.

    Article  PubMed  CAS  Google Scholar 

  304. Akasaka T, Balasias T, Russell LJ, et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2007;109:3451.

    Article  PubMed  CAS  Google Scholar 

  305. Baumgarten E, Wegner RD, Fengler R, Ludwig WD, Schulte-Overberg U, Domeyer C, Schüürmann J, Henze G. Calla-positive acute leukaemia with t(5q;14q) translocation and hypereosinophilia–a unique entity? Acta Haematol. 1989;82:85–90.

    Article  PubMed  CAS  Google Scholar 

  306. Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine Karran E, Nagel I, et al. t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood. 2008;111:387–91.

    Article  PubMed  CAS  Google Scholar 

  307. Iida S, Rao PH, Ueda R, Chaganti RSK, Dalla-Favera R. Chromosomal rearrangements of the PAX-5 locus in lymphoplasmacytic lymphoma with t(9;14)(p13;q32). Leuk Lymphoma. 1999;34:25.

    PubMed  CAS  Google Scholar 

  308. Meloni-Ehrig AM, Tirado CA, Chen K, Jahn J, Suchan S, Scheerle J, et al. Isolated del(14)(q21) in a case of precursor B-cell acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2005;161: 82–5.

    Article  PubMed  CAS  Google Scholar 

  309. Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41:1243–6.

    Article  PubMed  CAS  Google Scholar 

  310. Hertzberg L, Vendramini E, Ganmore I, Cazzaniga G, Schmitz M, Chalker J, et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood. 2010;115:1006–17.

    Article  PubMed  CAS  Google Scholar 

  311. Onciu M, Lai R, Vega F, Bueso-Ramos C, Medeiros LJ. Precursor T-cell acute lymphoblastic leukemia in adults: age-related immunophenotypic, cytogenetic, and molecular subsets. Am J Clin Pathol. 2002;117:252–8.

    Article  PubMed  Google Scholar 

  312. Assumpção JG, Ganazza MA, de Araújo M, Silva AS, Scrideli CA, Brandalise SR, Yunes JA. Detection of clonal immunoglobulin and T-cell receptor gene rearrangements in childhood acute lymphoblastic leukemia using a low-cost PCR strategy. Pediatr Blood Cancer. 2010;55:1278–86.

    Article  PubMed  Google Scholar 

  313. Cauwelier B, Dastugne N, Cools J, et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCR beta locus rearrangements and putative new T-cell oncogenes. Leukemia. 2006;20:1238.

    Article  PubMed  CAS  Google Scholar 

  314. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20:1496–510.

    Article  PubMed  CAS  Google Scholar 

  315. Pekarsky Y, Hallas C, Isobe M, Russo G, Croce CM. Abnormalities at 14q32.1 in T cell malignancies involve two oncogenes. Proc Natl Acad Sci USA. 1999;96(6):2949–51.

    Article  PubMed  CAS  Google Scholar 

  316. Przybylski GK, Dik WA, Wanzeck J, Grabarczyk P, Majunke S, Martin-Subero JI, et al. Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia. 2005;19(2):201–8.

    Article  PubMed  CAS  Google Scholar 

  317. Pomerantz J, Schreiber AN, Liegeois NJ, Silverman A, Alland L, Chin L, et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell. 1998;92:713–23.

    Article  PubMed  CAS  Google Scholar 

  318. Iolascon A, Faienza MF, Coppola B, della Ragione F, Schettini F, Biondi A. Homozygous deletions of cyclin-dependent kinase inhibitor genes, p16(INK4A) and p18, in childhood T cell lineage acute lymphoblastic leukemias. Leukemia. 1996;10:255–60.

    PubMed  CAS  Google Scholar 

  319. Graux C, Cools J, Melotte C, Quentmeier H, Ferrando A, Levine R, et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet. 2004;36:1084–9.

    Article  PubMed  CAS  Google Scholar 

  320. Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49:299–308.

    PubMed  CAS  Google Scholar 

  321. Quintás-Cardama A, Tong W, Manshouri T, Vega F, Lennon PA, Cools J, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies. Leukemia. 2008;22:1117–24.

    Article  PubMed  CAS  Google Scholar 

  322. Willis TG, Dyer MJS. The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 2000;96:808.

    PubMed  CAS  Google Scholar 

  323. Larramendy ML, Siitonen SM, Zhu Y, Hurme M, Vilpo L, Vilpo JA, Knuutila S. Optimized mitogen stimulation induces proliferation of neoplastic B cells in chronic lymphocytic leukemia: significance for cytogenetic analysis. The Tampere Chronic Lymphocytic Leukemia group. Cytogenet Cell Genet. 1998;82(3–4):215–21.

    Article  PubMed  CAS  Google Scholar 

  324. Decker T, Hipp S, Kreitman RJ, Pastan I, Peschel C, Licht T. Sensitization of B-cell chronic lymphocytic leukemia cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligodeoxynucleotides. Blood. 2002;99:1320–6.

    PubMed  CAS  Google Scholar 

  325. Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A, et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study Chronic Lymphocytic Leukemia Research Consortium. Cancer Genet Cytogenet. 2010;203:134–40.

    Article  PubMed  CAS  Google Scholar 

  326. Meloni-Ehrig A, Meck J, Christacos N, Kelly J, Matyakhina L, Schonberg S, et al. Stimulation of B-cell mature malignancies with the CpG-oligonucleotide DSP30 and interleukin-2 for improved detection of chromosome abnormalities. Blood. 2009;114:1955.

    Google Scholar 

  327. Staud LM. A closer look at follicular lymphoma. N Engl J Med. 2007;356:741.

    Article  Google Scholar 

  328. Jager U, Bocskor S, Le T, et al. Follicular lymphomas’ BCL-2/IGH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood. 2000;95:3520.

    PubMed  CAS  Google Scholar 

  329. Bentley G, Palutke M, Mohamed AN. Variant t(14;18) in malignant lymphoma: a report of seven cases. Cancer Genet Cytogenet. 2005;157:12–7.

    Article  PubMed  CAS  Google Scholar 

  330. Nanjangud G, Rao PH, Teruya-Feldstein J, Donnelly G, Qin J, Mehra S, et al. Molecular cytogenetic analysis of follicular lymphoma (FL) provides detailed characterization of chromosomal instability associated with the t(14;18)(q32;q21) positive and negative subsets and histologic progression. Cytogenet Genome Res. 2007;118:337–44.

    Article  PubMed  CAS  Google Scholar 

  331. Eide MB, Liestøl K, Lingjaerde OC, Hystad ME, Kresse SH, Meza-Zepeda L, Myklebost O, Trøen G, Aamot HV, Holte H, Smeland EB, Delabie J. Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones. Blood. 2010;116:1489–97.

    Article  PubMed  CAS  Google Scholar 

  332. Oschlies I, Salaverria I, Mahn F, Meinhardt A, Zimmermann M, Woessmann W, et al. Pediatric follicular lymphoma–a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin’s Lymphoma–Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. Haematologica. 2010;95: 253–9.

    Article  PubMed  Google Scholar 

  333. Coakley D. Denis Burkitt and his contribution to haematology/oncology. Br J Haematol. 2006;135:17–25.

    Article  PubMed  Google Scholar 

  334. Bishop PC, Rao VK, Wilson WH. Burkitt’s lymphoma: molecular pathogenesis and treatment. Cancer Invest. 2000;18:574.

    Article  PubMed  CAS  Google Scholar 

  335. Boerma EG, Siebert R, Kluin PM, Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23:225–34.

    Article  PubMed  CAS  Google Scholar 

  336. Gatter K, Pezzella F. Diffuse large C-cell lymphoma. Diagn Histopathol. 2010;16:69–81.

    Article  Google Scholar 

  337. Barrans SL, Evans PA, O’Connor SJ, Kendall SJ, Owen RG, Haynes AP, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9:2133–9.

    PubMed  CAS  Google Scholar 

  338. Abdel-Ghaffar H, El-Aziz SA, Shahin D, Degheidy H, Selim T, Elsobky E, et al. Prognostic value of the t(14;18)(q32;q21) in patients with diffuse large B-cell lymphoma. Cancer Invest. 2010;28:376–80.

    PubMed  Google Scholar 

  339. Ohno H, Fukuhara S. Significance of rearrangement of the BCL6 gene in B-cell lymphoid neoplasms. Leuk Lymphoma. 1997;27:53–63.

    PubMed  CAS  Google Scholar 

  340. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti RS, Dalla-Favera R. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood. 2003;101:2914–23.

    Article  PubMed  CAS  Google Scholar 

  341. Barrans SL, O’Conner SJM, Evans PAS, et al. Rearrangement of the BCL6 locus at 3q27 is an independent poor prognostic factor in nodal diffuse large B-cell lymphoma. Br J Haematol. 2002;117:322.

    Article  PubMed  CAS  Google Scholar 

  342. Hoeller S, Schneider A, Haralambieva E, Dirnhofer S, Tzankov A. FOXP1 protein overexpression is associated with inferior outcome in nodal diffuse large B-cell lymphomas with non-germinal centre phenotype, independent of gains and structural aberrations at 3p14.1. Histopathology. 2010;57:73–80.

    Article  PubMed  Google Scholar 

  343. Hasserjian RP, Ott G, Elenitoba-Johnson KS, Balague-Ponz O, de Jong D, de Leval L. Commentary on the WHO classification of tumors of lymphoid tissues (2008): “Gray zone” lymphomas overlapping with Burkitt lymphoma or classical Hodgkin lymphoma. J Hematopathol. 2009;2:89–95.

    Article  Google Scholar 

  344. Carbone A, Gloghini A, Aiello A, Testi A, Cabras A. B-cell lymphomas with features intermediate between distinct pathologic entities. From pathogenesis to pathology. Hum Pathol. 2010;41:621–31.

    Article  PubMed  CAS  Google Scholar 

  345. Bertrand P, Bastard C, Maingonnat C, Jardin F, Maisonneuve C, Courel MN, et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non-immunoglobulin partners in B-cell lymphomas. Leukemia. 2007;21:515–23.

    Article  PubMed  CAS  Google Scholar 

  346. Snuderl M, Kolman OK, Chen YB, Hsu JJ, Ackerman AM, Dal Cin P, et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol. 2010;34:327–40.

    Article  PubMed  Google Scholar 

  347. García JF, Mollejo M, Fraga M, Forteza J, Muniesa JA, Pérez-Guillermo M, et al. Large B-cell lymphoma with Hodgkin’s features. Histopathology. 2005;47:101–10.

    Article  PubMed  Google Scholar 

  348. Bertoni F, Rinaldi A, Zucca E, Cavalli F. Update on the molecular biology of mantle cell lymphoma. Hematol Oncol. 2006; 24:22027.

    Article  CAS  Google Scholar 

  349. Bertoni F, Zucca F, Cotter FE. Molecular basis of mantle cell lymphoma. Br J Haematol. 2004;124:130.

    Article  PubMed  CAS  Google Scholar 

  350. Li J-Y, Gaillard F, Moreau A, et al. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol. 1999;154:1449.

    Article  PubMed  CAS  Google Scholar 

  351. Komatsu H, Iida S, Yamamoto K, Mikuni C, Nitta M, Takahashi T, et al. A variant chromosome translocation at 11q13 identifying PRAD1/cyclin D1 as the BCL-1 gene. Blood. 1994;84:1226–31.

    PubMed  CAS  Google Scholar 

  352. Wlodarska I, Meeus P, Stul M, Tienpont L, Wouters E, Marcelis L, et al. Variant t(2;11)(p11;q13) associated with the IgK-CCND1 rearrangement is a recurrent translocation in leukemic small-cell B-non-Hodgkin lymphoma. Leukemia. 2004;18:1705–10.

    Article  PubMed  CAS  Google Scholar 

  353. Fu K, Weisenbarger DD, Griener TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene-expression profiling. Blood. 2005;106:4315.

    Article  PubMed  CAS  Google Scholar 

  354. Metcalf RA, Zhao S, Anderson MW, Lu ZS, Galperin I, Marinelli RJ, Cherry AM, Lossos IS, Natkunam Y. Characterization of D-cyclin proteins in hematolymphoid neoplasms: lack of specificity of cyclin-D2 and D3 expression in lymphoma subtypes. Mod Pathol. 2010;23:420–33.

    Article  PubMed  CAS  Google Scholar 

  355. Wlodarska I, Dierickx D, Vanhentenrijk V, Van Roosbroeck K, Pospísilová H, Minnei F, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 2008;111:5683–90.

    Article  PubMed  CAS  Google Scholar 

  356. Parrens M, Belaud-Rotureau MA, Fitoussi O, Carerre N, Bouabdallah K, et al. Blastoid and common variants of mantle cell lymphoma exhibit distinct immunophenotypic and interphase FISH features. Histopathology. 2006;48:353–62.

    Article  PubMed  CAS  Google Scholar 

  357. Huret JL. t(11;14)(q13;q32). Atlas Genet Cytogenet Oncol Haematol. 1998. URL: http://AtlasGeneticsOncology.org/Anomalies/t1114ID2021.html.

  358. Sagaert X, Tousseyn T. Marginal zone B-cell lymphomas. Discov Med. 2010;10:79–86.

    Article  PubMed  CAS  Google Scholar 

  359. Zullo A, Hassan C, Cristofari F, Perri F, Morini S. Gastric low-grade mucosal-associated lymphoid tissue-lymphoma: Helicobacter pylori and beyond. World J Gastrointest Oncol. 2010;2:181–6.

    Article  PubMed  Google Scholar 

  360. Dierlman J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphoma. Blood. 1999;93:3601.

    Google Scholar 

  361. Murga Penas EM, Callet-Bauchu E, Ye H, Gazzo S, Berger F, Schilling G, et al. The t(14;18)(q32;q21)/IGH-MALT1 translocation in MALT lymphomas contains templated nucleotide insertions and a major breakpoint region similar to follicular and mantle cell lymphoma. Blood. 2010;115:2214–9.

    Article  PubMed  CAS  Google Scholar 

  362. Du MQ. MALT lymphoma: many roads lead to nuclear factor-κb activation. Histopathology. 2011;58:26–38.

    Article  PubMed  Google Scholar 

  363. Sagaert X, De Wolf-Peeters C, Noels H, Baens M. The pathogenesis of MALT lymphomas: where do we stand? Leukemia. 2007;21:389–96.

    Article  PubMed  CAS  Google Scholar 

  364. Oscier D, Owen R, Johnson S. Splenic marginal zone lymphoma. Blood Rev. 2005;9:39–51.

    Article  Google Scholar 

  365. Baró C, Salido M, Espinet B, Astier L, Domingo A, Granada I, et al. New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by spectral karyotyping (SKY). Leuk Res. 2008;32:727–36.

    Article  PubMed  CAS  Google Scholar 

  366. Watkins AJ, Huang Y, Ye H, Chanudet E, Johnson N, Hamoudi R, et al. Splenic marginal zone lymphoma: characterization of 7q deletion and its value in diagnosis. J Pathol. 2010;220:461–74.

    PubMed  CAS  Google Scholar 

  367. Gazzo S, Baseggio L, Coignet L, Poncet C, Morel D, Coiffier B, et al. Cytogenetic and molecular delineation of a region of chromosome 3q commonly gained in marginal zone B-cell lymphoma. Haematologica. 2003;88:31–8.

    PubMed  CAS  Google Scholar 

  368. Brynes RK, Almaguer PD, Leathery KE, McCourty A, Arber DA, Medeiros LJ, Nathwani BN. Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol. 1996;9:995–1000.

    PubMed  CAS  Google Scholar 

  369. Salido M, Baró C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood. 2010;116:1479–88.

    Article  PubMed  CAS  Google Scholar 

  370. Salama ME, Lossos IS, Warnke RA, Natkunam Y. Immunoarchitectural patterns in nodal marginal zone B-cell lymphoma: a study of 51 cases. Am J Clin Pathol. 2009;132:39–49.

    Article  PubMed  Google Scholar 

  371. Vitolo U, Ferreri AJM, Montoto S. Lymphoplasmacytic ­lymphoma–Waldenstrom’s macroglobulinemia. Crit Rev Oncol Hematol. 2008;67:172–85.

    Article  PubMed  Google Scholar 

  372. Krishnan C, Cupp JS, Arber DA, Faix JD. Lymphoplasmacytic lymphoma arising in the setting of hepatitis C and mixed cryoglobulinemia. J Clin Oncol. 2007;25:4312–4.

    Article  PubMed  CAS  Google Scholar 

  373. Altieri A, Bermejo JL, Hemminki K. Familial aggregation of lymphoplasmacytic lymphoma with non-Hodgkin lymphoma and other neoplasms. Leukemia. 2005;19:2342–3.

    Article  PubMed  CAS  Google Scholar 

  374. Buckley PG, Walsh SH, Laurell A, Sundström C, Roos G, Langford CF, et al. Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations. Leuk Lymphoma. 2009;50:1528–34.

    Article  PubMed  CAS  Google Scholar 

  375. Cook JR, Aguilera NI, Reshmi S, Huang X, Yu Z, Gollin SM, et al. Deletion 6q is not a characteristic marker of nodal lymphoplasmacytic lymphoma. Cancer Genet Cytogenet. 2005;162:85–8.

    Article  PubMed  CAS  Google Scholar 

  376. Schop RF, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, et al. Waldenström macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100:2996–3001.

    Article  PubMed  CAS  Google Scholar 

  377. Hasserjian RP. Chronic lymphocytic leukemia, small lymphocytic, lymphoma, and monoclonal b-cell lymphocytosis. Surg Pathol. 2010;3:907–31.

    Article  Google Scholar 

  378. Hamblin TJ. Just exactly how common is CLL? Leukemia Res. 2009;33:1452–3.

    Article  Google Scholar 

  379. Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.

    Article  PubMed  CAS  Google Scholar 

  380. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  PubMed  CAS  Google Scholar 

  381. Seiler T, Döhner H, Stilgenbauer S. Risk stratification in chronic lymphocytic leukemia. Semin Oncol. 2006;33:186–94.

    Article  PubMed  CAS  Google Scholar 

  382. Montserrat E. New prognostic markers in CLL. Hematol Am Soc Hamatol Educ Program. 2006:279–84.

    Google Scholar 

  383. Tsimberidou AM, O’Brien S, Khouri I, Giles FJ, Kantarjian HM, Champlin R, et al. Clinical outcomes and prognostic factors in patients with Richter’s syndrome treated with chemotherapy or chemoimmunotherapy with or without stem-cell transplantation. J Clin Oncol. 2006;24:2343–51.

    Article  PubMed  CAS  Google Scholar 

  384. Van Dyke DL, Shanafelt TD, Call TG, Zent CS, Smoley SA, Rabe KG, et al. A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia. Br J Haematol. 2010;148:544–50.

    Article  PubMed  Google Scholar 

  385. Döhner H, Stilgenbauer S, Döhner K, Bentz M, Lichter P. Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med. 1999;77(2):266–81.

    Article  PubMed  Google Scholar 

  386. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  PubMed  CAS  Google Scholar 

  387. Quijano S, López A, Rasillo A, Sayagués JM, Barrena S, Sánchez ML, et al. Impact of trisomy 12, del(13q), del(17p), and del(11q) on the immunophenotype, DNA ploidy status, and proliferative rate of leukemic B-cells in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2008;74:139–49.

    PubMed  Google Scholar 

  388. Ripollés L, Ortega M, Ortuño F, González A, Losada J, Ojanguren J, et al. Genetic abnormalities and clinical outcome in chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2006;171:57–64.

    Article  PubMed  CAS  Google Scholar 

  389. Tsimberidou AM, Keating MJ. Richter syndrome: biology, incidence, and therapeutic strategies. Cancer. 2005;103:216–28.

    Article  PubMed  CAS  Google Scholar 

  390. Stevens-Kroef M, Simons A, Gorissen H, Feuth T, Weghuis DO, Buijs A, et al. Identification of chromosomal abnormalities ­relevant to prognosis in chronic lymphocytic leukemia using ­multiplex ligation-dependent probe amplification. Cancer Genet Cytogenet. 2009;195:97–104.

    Article  PubMed  CAS  Google Scholar 

  391. Reindl L, Bacher U, Dicker F, Alpermann T, Kern W, Schnittger S, et al. Biological and clinical characterization of recurrent 14q deletions in CLL and other mature B-cell neoplasms. Br J Haematol. 2010;151:25–36.

    Article  PubMed  CAS  Google Scholar 

  392. Sen F, Lai R, Albitar M. Chronic lymphocytic leukemia with t(14;18) and trisomy 12. Arch Pathol Lab Med. 2002;126:1543–6.

    PubMed  Google Scholar 

  393. Zenz T, Fröhling S, Mertens D, Döhner H, Stilgenbauer S. Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Pract Res Clin Haematol. 2010;23:71–84.

    Article  PubMed  Google Scholar 

  394. Jeggo PA, Carr AM, Lehmann AR. Splitting the ATM: distinct repair and checkpoint defects in ataxia–telangiectasia. Trends Genet. 1998;14:312–6.

    Article  PubMed  CAS  Google Scholar 

  395. Zenza T, Fröhlinga S, Mertensa D, Döhnera H, Stilgenbauera S. Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Pract Res Clin Haematol. 2010;23:71–84.

    Article  Google Scholar 

  396. Vahdati M, Graafland H, Emberger JM. Isochromosome 17q in cell lines of two cases of B cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 1983;9:227–32.

    Article  PubMed  CAS  Google Scholar 

  397. Dicker F, Herholz H, Schnittger S, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia. 2009;23:117–24.

    Article  PubMed  CAS  Google Scholar 

  398. Cuneo A, Rigolin GM, Bigoni R, De Angeli C, Veronese A, Cavazzini F, et al. Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis. Leukemia. 2004;18:476–83.

    Article  PubMed  CAS  Google Scholar 

  399. Stilgenbauer S, Bullinger L, Benner A, Wildenberger K, Bentz M, Döhner K, Ho AD, et al. Incidence and clinical significance of 6q deletions in B cell chronic lymphocytic leukemia. Leukemia. 1999;13:1331–4.

    Article  PubMed  CAS  Google Scholar 

  400. Lawce HBscClspCg, Olson S. FISH testing for deletions of chromosome 6q21 and 6q23 in hematologic neoplastic disorders. J Assoc Genet Technol. 2009;35:167–9.

    PubMed  Google Scholar 

  401. De Angeli C, Gandini D, Cuneo A, Moretti S, Bigoni R, Roberti MG, et al. BCL-1 rearrangements and p53 mutations in atypical chronic lymphocytic leukemia with t(11;14)(q13;q32). Haematologica. 2000;85:913–21.

    PubMed  Google Scholar 

  402. De Angeli C, Gandini D, Cuneo A, Moretti S, Bigoni R, Roberti MG, et al. BCL-1 rearrangements and p53 mutations in atypical chronic lymphocytic leukemia with t(11;14)(q13;q32). Haematologica. 2000;85(9):913–21.

    PubMed  Google Scholar 

  403. Yin CC, Lin KI, Ketterling RP, Knudson RA, Medeiros LJ, Barron LL, et al. Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 2009;131:663–70.

    Article  PubMed  Google Scholar 

  404. Schweighofer CD, Huh YO, Luthra R, Sargent RL, Ketterling RP, Knudson RA, et al. The B cell antigen receptor in atypical chronic lymphocytic leukemia with t(14;19)(q32;q13) demonstrates remarkable stereotypy. Int J Cancer. 2011;128(11):2759–64.

    Article  PubMed  CAS  Google Scholar 

  405. Quintero-Rivera F, Nooraie F, Rao PN. Frequency of 5′IGH deletions in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2009;190:33–9.

    Article  PubMed  CAS  Google Scholar 

  406. Irons RD, Le A, Bao L, Zhu X, Ryder J, et al. Characterization of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in Shanghai, China: molecular and cytogenetic characteristics, IgV gene restriction and hypermutation patterns. Leukemia Res. 2008;33:1599–603.

    Article  CAS  Google Scholar 

  407. Kröber A, Seiler T, Benner A, Bullinger L, Brückle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.

    PubMed  Google Scholar 

  408. Klein U, Dalla-Favera R. New insights into the pathogenesis of chronic lymphocytic leukemia. Semin Cancer Biol. 2010;20:377–83.

    Article  PubMed  CAS  Google Scholar 

  409. Lau LC, Lim P, Lim YC, Teng LM, Lim TH, Lim LC, Tan SY, Lim ST, Sanger WG, Tien SL. Occurrence of trisomy 12, t(14;18)(q32;q21), and t(8;14)(q24.1;q11.2) in a patient with B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2008;185:95–101.

    Article  PubMed  CAS  Google Scholar 

  410. Karakosta M, Voulgarelis M, Vlachadami I, Manola KN. Translocation (6;13)(p21;q14.1) as a rare nonrandom cytogenetic abnormality in chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2010;198:66–70.

    Article  PubMed  CAS  Google Scholar 

  411. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108:3152–60.

    Article  PubMed  CAS  Google Scholar 

  412. Moreno C, Montserrat E. New prognostic markers in chronic lymphocytic leukemia. Blood Rev. 2008;22:211–9.

    Article  PubMed  CAS  Google Scholar 

  413. Deaglio S, Vaisitti T, Aydin S, et al. In-tandem insight from basic science combined with clinical research: CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood. 2006;108:1135–44.

    Article  PubMed  CAS  Google Scholar 

  414. Wilhelm C, Neubauer A, Brendel C. Discordant results of flow cytometric ZAP-70 expression status in B-CLL samples if different gating strategies are applied. Cytometry B Clin Cytom. 2006;70:242–50.

    PubMed  Google Scholar 

  415. Morilla A, Gonzalez de Castro D, Del Giudice I, Osuji N, Else M, et al. Combinations of ZAP-70, CD38 and IGHV mutational status as predictors of time to first treatment in CLL. Leuk Lymphoma. 2008;49:2108–15.

    Article  PubMed  CAS  Google Scholar 

  416. Naeim F, Rao PN, Grody WW, editors. Mature B-Cell neoplasms. In: Hematopathology: morphology, immunophenotype, cytogenetics and molecular approaches. Chapter 15. Burlington: Academic/Elsevier; 2008. pp. 297–372.

    Google Scholar 

  417. Schlette E, Bueso-Ramos C, Giles F, Glassman A, Hayes K, Medeiros LJ. Mature B-cell leukemia with more than 55% prolymphocytes. A heterogeneous group that includes an unusual variant of mantle cell lymphoma. Am J Clin Pathol. 2001;115: 571–81.

    Article  PubMed  CAS  Google Scholar 

  418. Lens D, Coignet LJ, Brito-Babapulle V, Lima CS, Matutes E, Dyer MJ, Catovsky D. B cell prolymphocytic leukaemia (B-PLL) with complex karyotype and concurrent abnormalities of the p53 and c-MYC gene. Leukemia. 1999;13:873–6.

    Article  PubMed  CAS  Google Scholar 

  419. Hercher C, Robain M, Davi F, Garand R, Flandrin G, Valensi F, et al. Groupe Français d’Hématologie Cellulaire. A multicentric study of 41 cases of B-prolymphocytic leukemia: two evolutive forms. Leuk Lymphoma. 2001;42:981–7.

    Google Scholar 

  420. His ED. The leukemias of mature lymphocytes. Hematol Oncol Clin N Am. 2009;23:843–71.

    Article  Google Scholar 

  421. Cook JR. Splenic B-cell lymphomas/leukemias. Surg Pathol Clin. 2010;3:933–54.

    Article  Google Scholar 

  422. Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37:3–10.

    Article  PubMed  Google Scholar 

  423. Solé F, Woessner S, Florensa L, Espinet B, Lloveras E, et al. Cytogenetic findings in five patients with hairy cell leukemia. Cancer Genet Cytogenet. 1999;110:41–3.

    Article  PubMed  Google Scholar 

  424. Vallianatou K, Brito-Babapulle V, Matutes E, Atkinson S, Catovsky D. p53 gene deletion and trisomy 12 in hairy cell leukemia and its variant. Leuk Res. 1999;23:1041–5.

    Article  PubMed  CAS  Google Scholar 

  425. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364:1046–60.

    Article  PubMed  CAS  Google Scholar 

  426. Sawyer JR. Metaphase cytogenetic techniques in multiple myeloma. Methods Mol Biol. 2011;730:149–58.

    Article  PubMed  Google Scholar 

  427. Campbell LJ. Conventional cytogenetics in myeloma. Methods Mol Med. 2005;113:37–47.

    PubMed  Google Scholar 

  428. Bacher U, Haferlach T, Kern W, Alpermann T, Schnittger S, Haferlach C. Correlation of cytomorphology, immunophenotyping, and interphase fluorescence in situ hybridization in 381 patients with monoclonal gammopathy of undetermined significance and 301 patients with plasma cell myeloma. Cancer Genet Cytogenet. 2010;203:169–75.

    Article  PubMed  Google Scholar 

  429. Pozdnyakova O, Crowley-Larsen P, Zota V, Wang SA, Miron PM. Interphase FISH in plasma cell dyscrasia: increase in abnormality detection with plasma cell enrichment. Cancer Genet Cytogenet. 2009;189:112–7.

    Article  PubMed  CAS  Google Scholar 

  430. Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 2011;204(1):3–12.

    Article  PubMed  Google Scholar 

  431. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C, Groupe Français de Cytogénétique Hématologique. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood. 2001;98:2229–38.

    Article  PubMed  CAS  Google Scholar 

  432. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.

    Article  PubMed  CAS  Google Scholar 

  433. Zojer N, Koningsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Blood. 2000;95:1925.

    PubMed  CAS  Google Scholar 

  434. Avet-Louseau H, Daviet A, Sauner S, Bataille R. Chromosome 13 abnormalities in multiple myeloma are mostly monosomy 13. Br J Haematol. 2000;111:1116.

    Article  PubMed  CAS  Google Scholar 

  435. Fonseca R, Oken MM, Harrington D, et al. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia. 2001;15:981.

    Article  PubMed  CAS  Google Scholar 

  436. Chng WJ, Santana-Davila R, Van Wier SA, et al. Prognostic factors for hyperdiploid-myeloma: effect of chromosome 13 deletions and IGH translocations. Leukemia. 2006;20:807.

    Article  PubMed  CAS  Google Scholar 

  437. Kaufmann H, Kromer E, Nosslinger T, et al. Both chromosome 13 abnormalities by metaphase cytogenetics and deletion of 13q by interphase FISH only are prognostically relevant in multiple myeloma. Eur J Haematol. 2003;71:179.

    Article  PubMed  CAS  Google Scholar 

  438. Chang H, Qi C, Yi QL, et al. P53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005;105:358.

    Article  PubMed  CAS  Google Scholar 

  439. Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32) and −17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106:2837.

    Article  PubMed  CAS  Google Scholar 

  440. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK, et al. International Myeloma Working Group. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23: 2210–21.

    Google Scholar 

  441. Sawyer JR, Tricot G, Lukacs JL, et al. Genomic instability in multiple myeloma: evidence for jumping segmental duplications of chromosome 1q. Genes Chromosomes Cancer. 2005;42:95.

    Article  PubMed  CAS  Google Scholar 

  442. Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G, et al. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12 approximately 23 amplicon. Br J Haematol. 2009;147:484–94.

    Article  PubMed  CAS  Google Scholar 

  443. Avet-Loiseau H, Garand R, Lode L, et al. Translocation t(11;14)(q13;q32) is the hallmark of IgM, IgE, and nonsecretory multiple myeloma variants. Blood. 2003;101:1570.

    Article  PubMed  CAS  Google Scholar 

  444. Keats JJ, Reiman T, Maxwell CA, et al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood. 2003;101:1520.

    Article  PubMed  CAS  Google Scholar 

  445. Chang H, Stewart AK, Qi XY, et al. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood. 2005;106:353.

    Article  PubMed  CAS  Google Scholar 

  446. Owen RG, O’Connor SJ, Bond LR, de Tute RM, Rawstron AC. Translocation t(14;16) in IgM multiple myeloma. Br J Haematol. 2011;155(3):402–3.

    Article  PubMed  Google Scholar 

  447. Nishida K, Yashige H, Maekawa T, Fujii H, Taniwaki M, Horiike S, Misawa S, Inazawa J, Abe T. Chromosome rearrangement, t(6;14) (p21.1;q32.3), in multiple myeloma. Br J Haematol. 1989;71:295–6.

    Article  PubMed  CAS  Google Scholar 

  448. Ross FM, Chiecchio L, Dagrada G, Protheroe RK, Stockley DM, Harrison CJ, et al; UK Myeloma Forum. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term sTable disease in monoclonal gammopathies of undetermined significance. Haematologica. 2010;95:1221–5.

    Google Scholar 

  449. Fonseca R, Blood EA, Oken MM, et al. Myeloma and the t(11;14)(q13;q32): evidence for a biologically defined unique subsetof patients. Blood. 2002;99:3735–41.

    Article  PubMed  CAS  Google Scholar 

  450. Fenton JA, Pratt G, Rothwell DG, Rawstron AC, Morgan GJ. Translocation t(11;14) in multiple myeloma: analysis of translocation breakpoints on der(11) and der(14) chromosomes suggests complex molecular mechanisms of recombination. Genes Chromosomes Cancer. 2004;39:151–5.

    Article  PubMed  CAS  Google Scholar 

  451. Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, et al. Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood. 2004;104:1120–6.

    Article  PubMed  CAS  Google Scholar 

  452. Feyler S, O’Connor SJ, Rawstron AC, Subash C, Ross FM, Pratt G, et al. IgM myeloma: a rare entity characterized by a CD20-CD56-CD117- immunophenotype and the t(11;14). Br J Haematol. 2008;140:547–51.

    Article  PubMed  CAS  Google Scholar 

  453. Chesi M, Nardini E, Lim RSC, et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcript. Blood. 1998;92:3025.

    PubMed  CAS  Google Scholar 

  454. Avet-Loiseau H, Malard F, Campion L, Magrangeas F, Sebban C, Lioure B, et al. Intergroupe Francophone du Myélome. Translocation t(14;16) and multiple myeloma: is it really an independent prognostic factor? Blood. 2011;117:2009–11.

    Google Scholar 

  455. Chiecchio L, Dagrada GP, White HE, Towsend MR, Protheroe RK, Cheung KL, et al. UK Myeloma Forum. Frequent upregulation of MYC in plasma cell leukemia. Genes Chromosomes Cancer. 2009;48:624–36.

    Google Scholar 

  456. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Intergroupe Francophone du Myélome. Rearrangements of c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98:3082–6.

    Google Scholar 

  457. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and non-hyperdiploid myeloma tumors. Genes Chromosomes Cancer. 2008;47:573–90.

    Article  PubMed  CAS  Google Scholar 

  458. Dong HY, Scadden DT, de Leval L, et al. Plasmablastic lymphoma in HIV-positive patients: an aggressive Epstein-Barr virus-associated extramedullary plasmacytic neoplasm. Am J Surg Pathol. 2005;29:1633–41.

    Article  PubMed  Google Scholar 

  459. Delecluse HJ, Anagnostopoulos I, Dallenbach F, et al. Plasmablastic lymphomas of the oral cavity: a new entity associated with the human immunodeficiency virus infection. Blood. 1997;89:1413–20.

    PubMed  CAS  Google Scholar 

  460. Schichman SA, McClure R, Schaefer RF, et al. HIV and plasmablastic lymphoma manifesting in sinus, testicles, and bones: a further expansion of the disease spectrum. Am J Hematol. 2004;77:291–5.

    Article  PubMed  Google Scholar 

  461. Taddesse-Heath L, Meloni-Ehrig A, Scheerle J, Kelly JC, Jaffe ES. Plasmablastic lymphoma with MYC translocation: evidence for a common pathway in the generation of plasmablastic features. Mod Pathol. 2010;23(7):991–9.

    Article  PubMed  Google Scholar 

  462. Schnitzer B. Hodgkin lymphoma. Hematol Oncol Clin N Am. 2009;23:747–68.

    Article  Google Scholar 

  463. Hodgkin T. On some morbid experiences of the absorbent glands and spleen. Med Chir Trans. 1832;17:69–97.

    Google Scholar 

  464. Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol. 2010;221:248–63.

    Article  PubMed  CAS  Google Scholar 

  465. Seif GS, Spriggs AI. Chromosome changes in Hodgkin’s disease. J Natl Cancer Inst. 1967;39:557–70.

    PubMed  CAS  Google Scholar 

  466. Weber-Mathiensen K, Deerberg J, Poetsch M, et al. Numerical chromosome abnormalities are present within the CD34+ Hodgkin and Reed-Sternberg cells in 100% of analyzed cases of Hodgkin’s disease. Blood. 1995;86:1464.

    Google Scholar 

  467. Joos S, Menz CK, Wrobel G, et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood. 2002;99:1381.

    Article  PubMed  CAS  Google Scholar 

  468. Hartmann S, Martin-Subero JI, Gesk S, et al. Detection of genomic imbalances in microdissected Hodgkin and Reed–Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica. 2008;93:1318–26.

    Article  PubMed  CAS  Google Scholar 

  469. Panwalkar AW, Armitage JO. T-cell/NK-cell lymphomas: a review. Cancer Lett. 2007;253:1–13.

    Article  PubMed  CAS  Google Scholar 

  470. Iannitto E, Ferreri AJM, Minardi V, Tripodo C, Kreipe HH. Angioimmunoblastic T-cell lymphoma. Critical Rev Oncol Hematol. 2008;68:264–71.

    Article  Google Scholar 

  471. Dearden CE. T-cell prolymphocytic leukemia. Clin Lymphoma Myeloma. 2009;9:S239–43.

    Article  PubMed  Google Scholar 

  472. Waldman TA, Davis MM, Bongiovanni KF, et al. Rearrangements of genes for the antigen receptor on T-cells as markers of lineage and clonality in human lymphoid neoplasms. N Engl J Med. 1985;313:776.

    Article  Google Scholar 

  473. Ravandi F, O’Brien S, Jones D, Lerner S, Faderl S, Ferrajoli A, et al. T-cell prolymphocytic leukemia: a single-institution experience. Clin Lymphoma Myeloma. 2005;6:234–9.

    Article  PubMed  Google Scholar 

  474. de Oliveira FM, Tone LG, Simões BP, Rego EM, Marinato AF, Jácomo RH, Falcão RP. Translocations t(X;14)(q28;q11) and t(Y;14)(q12;q11) in T-cell prolymphocytic leukemia. Int J Lab Hematol. 2009;31(4):453–6.

    Article  PubMed  Google Scholar 

  475. Urbánková H, Holzerová M, Balcárková J, Raida L, Procházka V, Pikalová Z, Papajík T, Indrák K, Jarosová M. Array comparative genomic hybridization in the detection of chromosomal abnormalities in T-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2010;202(1):58–62.

    Article  PubMed  CAS  Google Scholar 

  476. Aozasa K, Zaki MA. Epidemiology and pathogenesis of nasal NK/T-cell lymphoma: a mini-review. Sci World J. 2011;11:422–8.

    Article  Google Scholar 

  477. Ohshima K, Ohgami A, Matsuoka M, Etoh K, Utsunomiya A, Makino T, Ishiguro M, Suzumiya J, Kikuchi M. Random integration of HTLV-1 provirus: increasing chromosomal instability. Cancer Lett. 1998;132:203–12.

    Article  PubMed  CAS  Google Scholar 

  478. Kamada N, Sakurai M, Miyamoto K, Sanada I, Sadamori N, Fukuhara S, Abe S, Shiraishi Y, Abe T, Kaneko Y, et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 1992;52:1481–93.

    PubMed  CAS  Google Scholar 

  479. Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H, Tomonaga M, Ohshima K, Kikuchi M, Sadamori N. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97:3612–20.

    Article  PubMed  CAS  Google Scholar 

  480. Weidmann E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia. 2000;14:991–7.

    Article  PubMed  CAS  Google Scholar 

  481. Tamaska J, Adam E, Kozma A, Gopcsa L, Andrikovics H, Tordai A, Halm G, Bereczki L, Bagdi E, Krenacs L. Hepatosplenic gammadelta T-cell lymphoma with ring chromosome 7, an isochromosome 7q equivalent clonal chromosomal aberration. Virchows Arch. 2006;449:479–83.

    Article  PubMed  Google Scholar 

  482. Rossbach HC, Chamizo W, Dumont DP, Barbosa JL, Sutcliffe MJ. Hepatosplenic gamma/delta T-cell lymphoma with isochromosome 7q, translocation t(7;21), and tetrasomy 8 in a 9-year-old girl. J Pediatr Hematol Oncol. 2002;24:154–7.

    Article  PubMed  Google Scholar 

  483. Galper SL, Smith BD, Wilson LD. Diagnosis and management of mycosis fungoides. Oncology (Williston Park). 2010;24: 491–501.

    Google Scholar 

  484. Karenko L, Hahtola S, Ranki A. Molecular cytogenetics in the study of cutaneous T-cell lymphomas (CTCL). Cytogenet Genome Res. 2007;118:353–61.

    Article  PubMed  CAS  Google Scholar 

  485. Mao X, Lillington D, Scarisbrick JJ, Mitchell T, Czepulkowski B, Russell-Jones R, et al. Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides. Br J Dermatol. 2002;147:464–75.

    Article  PubMed  CAS  Google Scholar 

  486. Mao X, Lillington DM, Czepulkowski B, Russell-Jones R, Young BD, Whittaker S. Molecular cytogenetic characterization of Sézary syndrome. Genes Chromosomes Cancer. 2003;36: 250–60.

    Article  PubMed  CAS  Google Scholar 

  487. Foss FM, Zinzani PL, Vose JM, Gascoyne RD, Rosen ST, Tobinai K. Peripheral T-cell lymphoma. Blood. 2011;117(25):6756–67.

    Article  PubMed  CAS  Google Scholar 

  488. Savage KJ. Peripheral T-cell lymphomas. Blood Rev. 2007;21: 201–16.

    Article  PubMed  CAS  Google Scholar 

  489. Lepretre S, Buchonnet G, Stamatoullas A, Lenain P, Duval C, d’Anjou J, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117:71–9.

    Article  PubMed  CAS  Google Scholar 

  490. Mulloy JC. Peripheral T cell lymphoma: new model  +  new insight. J Exp Med. 2010;207:911–3.

    Article  PubMed  CAS  Google Scholar 

  491. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20:313–8.

    Article  PubMed  CAS  Google Scholar 

  492. Papadavid E, Panayiotides I, Dalamaga M, Katoulis A, Economopoulos T, Stavrianeas N. Cutaneous involvement in angioimmunoblastic T-cell lymphoma. Indian J Dermatol. 2010;55(3):279–80.

    Article  PubMed  Google Scholar 

  493. Xu Y, McKenna RW, Hoang MP, Collins RH, Kroft SH. Composite angioimmunoblastic T-cell lymphoma and diffuse large B-cell lymphoma: a case report and review of the literature. Am J Clin Pathol. 2002;118:848–54.

    Article  PubMed  Google Scholar 

  494. Thorns C, Bastian B, Pinkel D, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell ­lymphoma unspecified: a matrix-based CGH approach. Genes Chromosomes Cancer. 2007;46:37.

    Article  PubMed  CAS  Google Scholar 

  495. Chen CY, Yao M, Tang JL, Tsay W, Wang CC, Chou WC, et al. Chromosomal abnormalities of 200 Chinese patients with non-Hodgkin’s lymphoma in Taiwan: with special reference to T-cell lymphoma. Ann Oncol. 2004;15:1091–6.

    Article  PubMed  Google Scholar 

  496. Piccaluga PP, Gazzola A, Mannu C, Agostinelli C, Bacci F, Sabattini E, et al. Pathobiology of anaplastic large cell lymphoma. Adv Hematol. 2010;1–10.

    Google Scholar 

  497. Kinney MC, Higgins RA, Medina EA. Anaplastic large cell lymphoma: twenty-five years of discovery. Arch Pathol Lab Med. 2011;135(1):19–43.

    PubMed  Google Scholar 

  498. Perkins SL, Pickring D, Lowe EJ, et al. Childhood anaplastic large cell lymphoma has a high incidence of ALK gene rearrangements as determined by immunohistochemical staining and fluorescent in situ hybridization: a genetic and pathological correlation. Br J Haematol. 2005;131:624.

    Article  PubMed  Google Scholar 

  499. Drexler HG, Gignac SM, von Wasielewski R, et al. Pathobiology of NMP-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia. 2000;14:1533.

    Article  PubMed  CAS  Google Scholar 

  500. Quintanilla-Martinez L, Pittaluga S, Miething C, et al. NPM-ALK-dependent expression of the transcription factor CCATT/enhancer binding protein β in ALK-positive anaplastic large cell lymphoma. Blood. 2006;108:2029.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelia Meloni-Ehrig Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meloni-Ehrig, A. (2013). The Cytogenetics of Hematologic Neoplasms. In: Gersen, S., Keagle, M. (eds) The Principles of Clinical Cytogenetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1688-4_15

Download citation

Publish with us

Policies and ethics