Skip to main content

Monitoring Response Variables

  • Chapter
  • First Online:
Fundamentals of Clinical Trials

Abstract

The investigator’s ethical responsibility to the study participants demands that results in terms of safety and clinical benefit be monitored during trials. If data partway through the trial indicate that the intervention is harmful to the participants, early termination of the trial should be considered. If these data demonstrate a clear benefit from the intervention, the trial may also be stopped early because to continue would be unethical to the participants in the control group. In addition, if differences in primary and possibly secondary response variables are so unimpressive that the prospect of a clear result is extremely unlikely, it may not be justifiable in terms of time, money, and effort to continue the trial. Also, monitoring of response variables can identify the need to collect additional data to clarify questions of benefit or toxicity that may arise during the trial. Finally, monitoring may reveal logistical problems or issues involving data quality that need to be promptly addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart Special Project Committee. Organization, review and administration of cooperative studies (Greenberg Report): A report from the Heart Special Project Committee to the National Advisory Council, May 1967. Control Clin Trials 1988;9:137–148.

    Article  Google Scholar 

  2. Baum M, Houghton J, Abrams K. Early stopping rules – clinical perspectives and ethical considerations. Stat Med 1994;13:1459–1470.

    Article  Google Scholar 

  3. Fleming TR, DeMets DL. Monitoring of clinical trials: Issues and recommendations. Control Clin Trials 1993;14:183–197.

    Article  Google Scholar 

  4. Ellenberg S, Fleming T, DeMets D. Data Monitoring Committees in Clinical Trials: A Practical Perspective. West Sussex, England: John Wiley & Sons, Ltd, 2002.

    Book  Google Scholar 

  5. DeMets DL, Furberg CD, Friedman L. Data Monitoring in Clinical Trials: A Case Studies Approach. New York, NY: Springer Science + Business Media, 2006.

    Book  Google Scholar 

  6. Fisher MR, Roecker EB, DeMets DL. The role of an independent statistical analysis center in the industry-modified National Institutes of Health model. Drug Inf J 2001;35:115–129.

    Google Scholar 

  7. The Coronary Drug Project Research Group. Practical aspects of decision making in clinical trials: The Coronary Drug Project as a case study. Control Clin Trials 1981;1:363–376.

    Article  Google Scholar 

  8. DeMets DL. Data monitoring and sequential analysis – an academic perspective. J Acquir Immune Defic Syndr 1990;3(Suppl 2):S124–S133.

    Google Scholar 

  9. Fleming TR, Green SJ, Harrington DP. Considerations for monitoring and evaluating treatment effects in clinical trials. Control Clin Trials 1984;5:55–66.

    Article  Google Scholar 

  10. Friedman L. The NHLBI model. A 25 year history. Stat Med 1993;12:425–431.

    Article  Google Scholar 

  11. Geller NL, Stylianou M. Practical issues in the data monitoring of clinical trials: Summary of responses to a questionnaire at NIH. Stat Med 1993;12:543–551.

    Article  Google Scholar 

  12. George SL. A survey of monitoring practices in cancer clinical trials. Stat Med 1993;12:435–450.

    Article  Google Scholar 

  13. O’Neill RT. Some FDA perspectives on data monitoring in clinical trials in drug development. Stat Med1993;12:601–608.

    Article  Google Scholar 

  14. Parmar MKB, Machin D. Monitoring clinical trials: Experience of, and proposals under consideration by, the Cancer Therapy Committee of the British Medical Research Council. Stat Med 1993;12:497–504.

    Article  Google Scholar 

  15. Peto R, Pike MC, Armitage P, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer 1976;34:585–612.

    Article  Google Scholar 

  16. Pocock SJ. Statistical and ethical issues in monitoring clinical trials. Stat Med 1993;12:1459–1469.

    Article  Google Scholar 

  17. Robinson J. A lay person’s perspective on starting and stopping clinical trials. Stat Med 1994;13:1473–1477.

    Article  Google Scholar 

  18. Rockhold FW, Enas GG. Data monitoring and interim analyses in the pharmaceutical industry: Ethical and logistical considerations. Stat Med 1993;12:471–479.

    Article  Google Scholar 

  19. Souhami RL. The clinical importance of early stopping of randomized trials in cancer treatments. Stat Med 1994;13:1293–1295.

    Article  Google Scholar 

  20. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The early termination of clinical trials: Causes, consequences, and control. With special reference to trials in the field of arrhythmias and sudden death. Circulation 1994;89:2892–2907.

    Article  Google Scholar 

  21. Williams GW, Davis RL, Getson AJ, et al. Monitoring of clinical trials and interim analyses from a drug sponsor’s point of view. Stat Med 1993;12:481–492.

    Article  Google Scholar 

  22. Burke G. Discussion of “Early stopping rules – clinical perspectives and ethical considerations.” Stat Med 1994;13:1471–1472.

    Article  Google Scholar 

  23. Buyse M. Interim analyses, stopping rules and data monitoring in clinical trials in Europe. Stat Med 1993;12:509–520.

    Article  Google Scholar 

  24. Canner PL. Monitoring of the data for evidence of adverse or beneficial treatment effects. Control Clin Trials 1983;4:467–483.

    Article  Google Scholar 

  25. Simon R. Some practical aspects of the interim monitoring of clinical trials. Stat Med 1994;13:1401–1409.

    Article  Google Scholar 

  26. Crowley J, Green S, Liu PY, Wolf M. Data monitoring committees and the early stopping guidelines: The Southwest Oncology Group experience. Stat Med 1994;13:1391–1399.

    Article  Google Scholar 

  27. Green S and Crowley J. Data monitoring committees for Southwest Oncology Group clinical trials. Stat Med 1993;12:451–455.

    Article  Google Scholar 

  28. Harrington D, Crowley J, George SL, et al. The case against independent monitoring committees. Stat Med 1994;13:1411–1414.

    Article  Google Scholar 

  29. Herson J. Data monitoring boards in the pharmaceutical industry. Stat Med 1993;12:555–561.

    Article  Google Scholar 

  30. Pater JL. The use of data monitoring committees in Canadian trial groups. Stat Med 1993;12:505–508.

    Article  Google Scholar 

  31. Walters L. Data monitoring committees: The moral case for maximum feasible independence. Stat Med 1993;12:575–580.

    Article  Google Scholar 

  32. Wittes J. Behind closed doors: The data monitoring board in randomized clinical trials. Stat Med 1993;12:419–424.

    Article  Google Scholar 

  33. DeMets DL, Fleming TR, Whitley RJ, et al. The Data and Safety Monitoring Board and Acquired Immune Deficiency Syndrome (AIDS) clinical trials. Control Clin Trials 1995;16:408–421.

    Article  Google Scholar 

  34. Ellenberg SS, Myers MW, Blackwelder WC, Hoth DF. The use of external monitoring committees in clinical trials of the National Institute of Allergy and Infectious Diseases. Stat Med 1993;12:461–467.

    Article  Google Scholar 

  35. Packer M, Carver JR, Rodeheffer et al. for the PROMISE Study Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991;325:1468–1475.

    Article  Google Scholar 

  36. Packer M, Rouleau J, Swedberg K, et al. for the PROFILE Investigators. Effect of Flosequinan on survival in chronic heart failure: Preliminary results of the PROFILE study. Circulation 1993; 88(Suppl I): I-301.

    Google Scholar 

  37. Packer M, O’Connor CM, Ghali JK, et al. for the Prospective Randomized Amlodipine Survival Evaluation Study Group. Effect of amlodipine on morbidity and mortality in severe chronic heart failure. N Engl J Med 1996;335:1107–1114.

    Article  Google Scholar 

  38. Shalala D. Protecting research subjects – what must be done. N Engl J Med 2000;343:808-810.

    Article  Google Scholar 

  39. National Institutes of Health. NIH policy for data and safety monitoring. NIH Guide. http://grants2.nih.gov/grants/guide/notice-files/not98-084.html, 1998.

  40. US Food and Drug Administration. Guidance for clinical trial sponsors: Establishment and operation of clinical trial data monitoring committees. http://www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM127073.pdf.

  41. Clemens F, Elbourne D, Darbyshire J, Pocock S, the DAMOCLES Group. Data monitoring in randomized controlled trials: Surveys of recent practice and policies. Clin Trials 2005;2:22–33.

    Article  Google Scholar 

  42. Freedman B. Equipoise and the ethics of clinical research. N Engl J Med 1987;317:141–145.

    Article  Google Scholar 

  43. Meinert CL. Masking monitoring in clinical trials – blind stupidity? N Engl J Med1998;338:1381–1382.

    Article  Google Scholar 

  44. Li Z, Geller NL. On the choice of times for data analysis in group sequential clinical trials. Biometrics 1991;47:745–750.

    Article  Google Scholar 

  45. Bross I. Sequential medical plans. Biometrics 1952;8:188–205.

    Article  Google Scholar 

  46. Robbins H. Some aspects of sequential design of experiments. Bull Am Math Soc 1952;58:527–535.

    Article  MATH  MathSciNet  Google Scholar 

  47. Anscombe FJ. Sequential medical trials. J Am Stat Assoc1963;58:365–383.

    Article  MathSciNet  Google Scholar 

  48. Armitage P. Restricted sequential procedures. Biometrika 1957;44:9–26.

    MATH  MathSciNet  Google Scholar 

  49. Armitage P, McPherson CK, Rowe BC. Repeated significance tests on accumulating data.J R Stat Soc Ser A 1969;132:235–244.

    Article  MathSciNet  Google Scholar 

  50. Robbins H. Statistical methods related to the law or iterated logarithm. Ann Math Stat 1970;41:1397–1409.

    Article  MATH  MathSciNet  Google Scholar 

  51. The Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 1975;231:360–381.

    Article  Google Scholar 

  52. Pocock SJ. When to stop a clinical trial. Br Med J 1992;305:235–240.

    Article  Google Scholar 

  53. DeMets D. Stopping guidelines vs. stopping rules: A practitioner’s point of view. Commun Stat Theory Methods 1984;13:2395–2417.

    Article  Google Scholar 

  54. Pocock SJ. When (not) to stop a clinical trial for benefit. JAMA 2005;294:2228–2230.

    Article  Google Scholar 

  55. Montori VM, Devereaux PJ, Adhikari NKJ, et al. Randomized trials stopped early for benefit: a systematic review. JAMA 2005;294:2203–2209.

    Article  Google Scholar 

  56. Freidlin B, Korn EL. Stopping clinical trials for benefit: Impact on estimation. Clin Trials 2009;6:119–125.

    Article  Google Scholar 

  57. Goodman SN. Stopping early for efficacy: An almost unbiased view. Clin Trials 2009;6:133–135.

    Article  Google Scholar 

  58. Meinert CL, Knatterud GL, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970;19(Suppl):787–830.

    Google Scholar 

  59. Knatterud GL, Meinert CL, Klimt CR, et al. Effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. IV. A preliminary report on phenformin results. JAMA 1971;217:777–784.

    Article  Google Scholar 

  60. Report of the committee for the assessment of biometric aspects of controlled trials of hypoglycemic agents. JAMA 1975;231:583–608.

    Google Scholar 

  61. Kolata GB. Controversy over study of diabetes drugs continues for nearly a decade. Science 1979;203:986–990.

    Article  Google Scholar 

  62. The Coronary Drug Project Research Group. The Coronary Drug Project: initial findings leading to modifications of its research protocol. JAMA 1970;214:1303–1313.

    Article  Google Scholar 

  63. The Coronary Drug Project Research Group. The Coronary Drug Project: Findings leading to further modifications of its protocol with respect to dextrothyroxine. JAMA 1972;220:996–1008.

    Article  Google Scholar 

  64. The Coronary Drug Project Research Group. The Coronary Drug Project: Findings leading to discontinuation of the 2.5-mg/day estrogen group. JAMA 1973;226:652–657.

    Article  Google Scholar 

  65. Pocock SJ, Wang D, Wilhelmsen L, Hennekens CH. The data monitoring experience in the Candasartan Heart failure Assessment of Reduction in Mortality and morbidity (CHARM). Am Heart J 2005;149:939–943.

    Article  Google Scholar 

  66. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: a clinical trial. Ann Intern Med 1980;93:391–398.

    Article  Google Scholar 

  67. DeMets DL, Williams GW, Brown BW Jr, for the NOTT Research Group. A case report of data monitoring experience: The nocturnal oxygen therapy trial. Control Clin Trials 1982;3:113–124.

    Article  Google Scholar 

  68. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;332:349–360.

    Article  Google Scholar 

  69. The Diabetic Retinopathy Study Research Group. Diabetic Retinopathy Study. Report no 6. Design, methods, and baseline results. Invest Ophthalmol Vis Sci 1981;21:149–209.

    Google Scholar 

  70. The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Opththalmol 1976;81:383–396.

    Google Scholar 

  71. The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: The second report of the Diabetic Retinopathy Study findings. Ophthalmology 1978;85:82–106.

    Article  Google Scholar 

  72. Ederer F, Podgor MJ, The Diabetic Retinopathy Study Research Group. Assessing possible late treatment effects in stopping a clinical trial early: Diabetic retinopathy study report no. 9. Control Clin Trials 1984;5:373–381.

    Article  Google Scholar 

  73. Beta-blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. JAMA 1982;247:1707–1714.

    Article  Google Scholar 

  74. DeMets DL, Hardy R, Friedman LM, Lan KKG. Statistical aspects of early termination in the Beta-Blocker Heart Attack Trial. Control Clin Trials 1984;5:362–372.

    Article  Google Scholar 

  75. Packer M, Coats AJ, Fowler MB, et al., for the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001;334:1651–1658.

    Article  Google Scholar 

  76. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trials in congestive heart failure (MERIT-HF). Lancet 1999;353:2001–2007.

    Article  Google Scholar 

  77. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol study II (CIBIS-II). A randomised trial. Lancet 1999;353:9–13.

    Article  Google Scholar 

  78. The Beta-Blocker Evaluation Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001;344:1659–1667.

    Article  Google Scholar 

  79. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N Engl J Med 1989;321:406–412.

    Article  Google Scholar 

  80. Pawitan Y, Hallstrom A. Statistical interim monitoring of the Cardiac Arrhythmia Suppression Trial. Stat Med 1990;9:1081–1090.

    Article  Google Scholar 

  81. Friedman L, Bristow JD, Hallstrom A, et al. Data monitoring in the Cardiac Arrhythmia Suppression Trial. Online J Curr Clin Trials 1993 Jul 31;Doc no 79.

    Google Scholar 

  82. The Cardiac Arrhythmia Suppression Trial II Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 1992;327:227–233.

    Article  Google Scholar 

  83. DeMets DL, Pocock S, Julian DG. The agonizing negative trend in monitoring clinical trials. Lancet 1999;354:1983–1988.

    Article  Google Scholar 

  84. Swedberg K, Held P, Kjekhus J, et al. Effects of early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992;327:678–684.

    Article  Google Scholar 

  85. Furberg C, Campbell R, Pitt B. ACE inhibitors after myocardial infarction (Letter). N Engl J Med 1993;328:967–968.

    Google Scholar 

  86. Sylvester R, Bartelink H, Rubens R. A reversal of fortune: Practical problems in the monitoring and interpretation of an EORTC breast cancer trial. Stat Med 1994;13:1329–1335.

    Article  Google Scholar 

  87. Pater JL. Timing the collaborative analysis of three trials comparing 5-FU plus folinic acid (FUFA) to surgery alone in the management of resected colorectal cancer: A National Cancer Institute of Canada Clinical Trials Group (NCIC-CTG) perspective. Stat Med 1994;13:1337–1340.

    Article  Google Scholar 

  88. Hypertension Detection and Follow-up Program Cooperative Group. Five-year findings of the hypertension detection and follow-up program. Reduction in mortality with high blood pressure, including mild hypertension. JAMA 1979;242:2562–2571.

    Article  Google Scholar 

  89. Aspirin Myocardial Infarction Study Research Group. A randomized, controlled trial of aspirin in persons recovered from myocardial infarction. JAMA 1980;243:661–669.

    Article  Google Scholar 

  90. Multiple Risk Factor Intervention Trial Research Group. Multiple risk factor interventional trial. Risk factor changes and mortality results. JAMA 1982;248:1465–1477.

    Article  Google Scholar 

  91. CASS Principal Investigators and their Associates. Coronary Artery Surgery Study (CASS): A randomized trial of coronary artery bypass surgery. Survival data. Circulation 1983;68:939–950.

    Article  Google Scholar 

  92. Multiple Risk Factor Intervention Trial Research Group. Mortality after 16 years for participants randomized to the Multiple Risk Factor Intervention Trial. Circulation 1996;94:946–951; correction 1997;95:760.

    Article  Google Scholar 

  93. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized clinical trial. JAMA 2002;288:321–333.

    Article  Google Scholar 

  94. The Women’s Health Initiative Steering Committee. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy. The Women’s Health Initiative randomized controlled trial. JAMA 2004;291:1701–1712.

    Article  Google Scholar 

  95. McMurray JJ, Teerlink JR, Cotter G, for the VERITAS Investigators. Effects of tezosentan on symptoms and clinical outcomes in patients with acute heart failure. The VERITAS randomized controlled trials. JAMA 2007;298:2009–2019.

    Article  Google Scholar 

  96. Tegler CH, Furberg CD. Lessons from warfarin trials in atrial fibrillation: Missing the window of opportunity. In DeMets DL, Friedman L, Furberg CD (eds.) Data Monitoring in Clinical Trials: A Case Studies Approach. New York: Springer Science Business Media, 2006, pp. 312–319.

    Chapter  Google Scholar 

  97. Liberati A. Conclusions. 1: The relationship between clinical trials and clinical practice: The risks of underestimating its complexity. Stat Med 1994;13:1485–1491.

    Article  Google Scholar 

  98. O’Neill RT. Conclusions. 2: The relationship between clinical trials and clinical practice: The risks of underestimating its complexity. Stat Med 1994;13:1493–1499.

    Article  Google Scholar 

  99. Collaborative Group on Antenatal Steroid Therapy. Effect of antenatal dexamethasone administration on the prevention of respiratory distress syndrome. Am J Obstet Gynecol 1981;141:276–287.

    Google Scholar 

  100. The MIAMI Trial Research Group. Metoprolol In Acute Myocardial Infarction (MIAMI). A randomized placebo-controlled international trial. Eur Heart J 1985;6:199–226.

    Google Scholar 

  101. Cui L, Hung HM, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics 1999;55:853–857.

    Article  MATH  Google Scholar 

  102. Proschan MA, Liu Q, Hunsberger S. Practical midcourse sample size modification in clinical trials. Control Clin Trials 2003;24:4–15.

    Article  Google Scholar 

  103. Lan KKG, Trost DC. Estimation of parameters and sample size re-estimation. In ASA Proceedings of the Biopharmaceutical Section, pp. 48–51. American Statistical Association (Alexandria, VA), 1997.

    Google Scholar 

  104. Chen JYH, DeMets DL, Lan KKG. Increasing the sample size when the unblinded interim result is promising. Stat Med 2004;23:1023–1038.

    Article  Google Scholar 

  105. Fleming TR. Standard versus adaptive monitoring procedures: A commentary. Stat Med 2006;25:3305–3312; discussion 3313–3314, 3326–3347.

    Article  MathSciNet  Google Scholar 

  106. Tsiatis AA, Mehta C. On the inefficiency of the adaptive design for monitoring clinical trials. Biometrika 2003;90:367–378.

    Article  MATH  MathSciNet  Google Scholar 

  107. Taylor AL, Ziesche S, Yancy C, et al. for the African-American Heart Failure Trial Investigators. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004;351:2049–2057.

    Article  Google Scholar 

  108. Wald A. Sequential Analysis. New York: John Wiley and Sons, 1947.

    MATH  Google Scholar 

  109. Cornfield J. Sequential trials, sequential analysis and the likelihood principle. Am Stat 1966;20:18–23.

    MATH  Google Scholar 

  110. Armitage P. Sequential Medical Trials (2nd edition). New York: John Wiley and Sons, 1975.

    Google Scholar 

  111. Simon R, Weiss GH, Hoel DG. Sequential analysis of binomial clinical trials. Biometrika 1975;62:195–200.

    Article  MATH  MathSciNet  Google Scholar 

  112. Whitehead J, Jones D. The analysis of sequential clinical trials. Biometrika 1979;66:443–452.

    Article  MATH  MathSciNet  Google Scholar 

  113. Whitehead J. The Design and Analysis of Sequential Clinical Trials. New York: Haisted Press, 1983.

    MATH  Google Scholar 

  114. Whitehead J, Stratton I. Group sequential clinical trials with triangular continuation regions. Biometrics 1983;39:227–236.

    Article  MathSciNet  Google Scholar 

  115. DeMets DL, Lan KKG. An overview of sequential methods and their application in clinical trials. Commun Stat Theory Methods 1984;13:2315–2338.

    Article  MATH  Google Scholar 

  116. Silverman WA, Agate FJ Jr, Fertig JW. A sequential trial of the nonthermal effect of atmospheric humidity on survival of newborn infants of low birth weight. Pediatrics 1963;31:719–724.

    Google Scholar 

  117. Truelove SC, Watkinson G, Draper G. Comparison of corticosteroid and sulphasalazine therapy in ulcerative colitis. Br Med J 1962;2:1708–1711.

    Article  Google Scholar 

  118. Acute Leukemia Group B, Freireich EJ, Gehan E, Frei E, et al. The effect of 6-mercaptopurine on the duration of steroid-induced remissions in acute leukemia: A model for evaluation of other potentially useful therapy. Blood 1963;21:699–716.

    Google Scholar 

  119. McPherson CK, Armitage P. Repeated significance tests on accumulating data when the null hypothesis is not true. J R Stat Soc Ser A 1971;134:15–25.

    Article  Google Scholar 

  120. Whitehead J, Jones DR, Ellis SH. The analysis of a sequential clinical trial for the comparison of two lung cancer treatments. Stat Med 1983;2:183–190.

    Article  Google Scholar 

  121. Dambrosia JM, Greenhouse SW. Early stopping for sequential restricted tests of binomial distributions. Biometrics 1983;39:695–710.

    Article  MATH  MathSciNet  Google Scholar 

  122. Chatterjee SK, Sen PK. Nonparametric testing under progressive censoring. Calcutta Stat Assoc Bull 1973;22:13–50.

    MATH  MathSciNet  Google Scholar 

  123. Muenz LR, Green SB, Byar DP. Applications of the Mantel–Haenszel statistic to the comparison of survival distributions. Biometrics 1977;33:617–626.

    Article  Google Scholar 

  124. Davis CE. A two sample Wilcoxon test for progressively censored data. Commun Stat Theory Methods 1978;A7:389–398.

    Article  MATH  Google Scholar 

  125. Koziol J, Petkau J. Sequential testing of the equality of two survival distributions using the modified Savage statistic. Biometrika 1978;65:615–623.

    Article  MATH  MathSciNet  Google Scholar 

  126. Breslow N, Haug C. Sequential comparison of exponential survival curves. J Am Stat Assoc 1972;67:691–697.

    Article  Google Scholar 

  127. Canner PL. Monitoring treatment differences in long-term clinical trials. Biometrics 1977;33:603–615.

    Article  Google Scholar 

  128. Jones D, Whitehead J. Sequential forms of the log rank and modified Wilcoxon tests for censored data. Biometrika 1979;66:105–113.

    Article  MATH  MathSciNet  Google Scholar 

  129. Joe H, Koziol J, Petkau JA. Comparison of procedures for testing the equality of survival distributions. Biometrics 1981;37:327–340.

    Article  MATH  Google Scholar 

  130. Nagelkerke NJD, Hart AAM. The sequential comparison of survival curves. Biometrika 1980;67:247–249.

    Article  MATH  MathSciNet  Google Scholar 

  131. Sellke T, Siegmund D. Sequential analysis of the proportional hazards model. Biometrika 1983;70:315–326.

    Article  MATH  MathSciNet  Google Scholar 

  132. Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Br J Radiol 1971;44:793–797.

    Article  Google Scholar 

  133. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika 1977;64:191–199.

    Article  Google Scholar 

  134. Pocock SJ. Size of cancer clinical trials and stopping rules. Br J Cancer 1978;38:757–766.

    Article  Google Scholar 

  135. Pocock SJ. Interim analyses for randomized clinical trials: The group sequential approach. Biometrics 1982;38:153–162.

    Article  Google Scholar 

  136. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics 1979;35:549–556.

    Article  Google Scholar 

  137. Freedman LS, Lowe D, Macaskill P. Stopping rules for clinical trials. Stat Med 1983;2:167–174.

    Article  Google Scholar 

  138. DeMets DL. Practical aspects in data monitoring: A brief review. Stat Med 1987;6:753–760.

    Article  Google Scholar 

  139. Emerson SS, Fleming TR. Interim analyses in clinical trials. Oncology 1990;4:126-133.

    Google Scholar 

  140. Fleming TR, Watelet LF. Approaches to monitoring clinical trial. J Natl Cancer Inst 1989;81:188–193.

    Article  Google Scholar 

  141. Jennison C, Turnbull BW. Statistical approaches to interim monitoring of medical trials: A review and commentary. Stat Sci 1990;5:299–317.

    Article  MATH  MathSciNet  Google Scholar 

  142. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966;50:163–170.

    Google Scholar 

  143. Tsiatis AA. The asymptotic joint distribution of the efficient scores tests for the proportional hazards model calculated over time. Biometrika 1981;68:311–315.

    Article  MATH  MathSciNet  Google Scholar 

  144. Tsiatis AA. Repeated significance testing for a general class of statistics used in censored survival analysis. J Am Stat Assoc 1982;77:855–861.

    Article  MATH  MathSciNet  Google Scholar 

  145. Tsiatis AA. Group sequential methods for survival analysis with staggered entry. In Johnson R, Crowley J (eds.). Survival Analysis. Monograph Series 2. Hayward, California: IMS Lecture Notes, 1982, pp. 257–268.

    Google Scholar 

  146. Gail MH, DeMets DL, Slud EV. Simulation studies on increments of the two-sample log rank score test for survival data, with application to group sequential boundaries. In Johnson R, Crowley J (eds.). Survival Analysis. Monograph Series 2. Hayward, California: IMS Lecture Notes, 1982, pp. 287–301.

    Google Scholar 

  147. Harrington DP, Fleming TR, Green SJ. Procedures for serial testing in censored survival data. In Johnson R, Crowley J (eds.). Survival Analysis. Monograph Series 2. Hayward, California: IMS Lecture Notes, 1982, pp. 269–286.

    Google Scholar 

  148. Gehan EA. A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. Biometrika 1965;52:203–223.

    MATH  MathSciNet  Google Scholar 

  149. Slud E, Wei LJ. Two-sample repeated significance tests based on the modified Wilcoxon statistic. J Am Stat Assoc 1982;77:862–868.

    Article  MATH  MathSciNet  Google Scholar 

  150. Peto R, Peto J. Asymptotically efficient rank invariant test procedures. J R Stat Soc Ser A 1972;135:185–206.

    Article  Google Scholar 

  151. DeMets DL, Gail MH. Use of logrank tests and group sequential methods at fixed calendar times. Biometrics 1985;41:1039–1044.

    Article  Google Scholar 

  152. George SL. Discussion of “Sequential methods based on the boundaries approach for the clinical comparison of survival times.” Stat Med 1994;13:1369–1370.

    Article  Google Scholar 

  153. Kim K. Study duration for group sequential clinical trials with censored survival data adjusting for stratification. Stat Med 1992;11:1477–1488.

    Article  Google Scholar 

  154. Kim K, Tsiatis AA. Study duration for clinical trials with survival response and early stopping rule. Biometrics 1990;46:81–92.

    Article  MATH  MathSciNet  Google Scholar 

  155. Whitehead J. Sequential methods based on the boundaries approach for the clinical comparison of survival times. Stat Med 1994;13:1357–1368.

    Article  Google Scholar 

  156. Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika 1983;70:659–663.

    Article  MATH  MathSciNet  Google Scholar 

  157. Lan KKG, DeMets DL, Halperin M. More flexible sequential and non-sequential designs in long-term clinical trials. Commun Stat Theory Methods 1984;13:2339–2354.

    Article  Google Scholar 

  158. DeMets DL, Lan KKG. Interim analysis: The alpha spending function approach. Stat Med 1994;13:1341–1352.

    Article  Google Scholar 

  159. Kim K, DeMets DL. Design and analysis of group sequential tests based on the type I error spending rate function. Biometrika 1987;74:149–154.

    Article  MATH  MathSciNet  Google Scholar 

  160. Lan KKG, DeMets DL. Group sequential procedures: Calendar versus information time. Stat Med 1989;8:1191–1198.

    Article  Google Scholar 

  161. Lan KKG, Rosenberger WF, Lachin JM. Use of spending functions for occasional or continuous monitoring of data in clinical trials. Stat Med 1993;12:2214–2231.

    Google Scholar 

  162. Lan KKG, Zucker D. Sequential monitoring of clinical trials: The role of information in Brownian motion. Stat Med 1993;12:753–765.

    Article  Google Scholar 

  163. Lan KKG, Reboussin DM, DeMets DL. Information and information fractions for design and sequential monitoring of clinical trials. Commun Stat Theory Methods 1994;23:403–420.

    Article  MATH  Google Scholar 

  164. Reboussin DM, DeMets DL, Kim K, Lan KKG. Programs for computing group sequential bounds using the Lan–DeMets method. Control Clin Trials 2000;21:190–207.

    Article  Google Scholar 

  165. Hwang IK, Shih WJ, De Cani JS. Group sequential designs using a family of type I error probability spending function. Stat Med 1990;9:1439–1445.

    Article  Google Scholar 

  166. Wang SK, Tsiatis AA. Approximately optimal one-parameter boundaries for group sequential trials. Biometrics 1987;43:193–199.

    Article  MATH  MathSciNet  Google Scholar 

  167. Lan KKG, DeMets DL. Changing frequency of interim analyses in sequential monitoring. Biometrics 1989;45:1017–1020.

    Article  Google Scholar 

  168. Proschan MA, Follman DA, Waclawiw MA. Effects of assumption violations on type I error rate in group sequential monitoring. Biometrics 1992;48:1131–1143.

    Article  Google Scholar 

  169. Geller NL. Discussion of “Interim analysis: The alpha spending approach.” Stat Med 1994;13:1353–1356.

    Article  Google Scholar 

  170. Falissard B, Lellouch J. A new procedure for group sequential analysis in clinical trials. Biometrics 1992;48:373–388.

    Article  MATH  MathSciNet  Google Scholar 

  171. Lan KKG, Lachin J. Implementation of group sequential logrank tests in a maximum duration trial. Biometrics 1990;46:759–770.

    Article  Google Scholar 

  172. Kim K, DeMets DL. Sample size determination for group sequential clinical trials with immediate response. Stat Med 1992;11:1391–1399.

    Article  Google Scholar 

  173. Lee JW. Group sequential testing in clinical trials with multivariate observations: a review. Stat Med 1994;13:101–111.

    Article  Google Scholar 

  174. Lee JW, DeMets DL. Sequential comparison of change with repeated measurement data. J Am Stat Assoc 1991;86:757–762.

    Article  MathSciNet  Google Scholar 

  175. Lee JW, DeMets DL. Sequential rank tests with repeated measurements in clinical trials. J Am Stat Assoc 1992;87:136–142.

    Article  MATH  MathSciNet  Google Scholar 

  176. Su JQ, Lachin JM. Group sequential distribution-free methods for the analysis of multivariate observations. Biometrics 1992;48:1033–1042.

    Article  MATH  Google Scholar 

  177. Wei LJ, Su JQ, Lachin JM. Interim analyses with repeated measurements in a sequential clinical trial. Biometrika 1990;77:359–364.

    Article  MATH  MathSciNet  Google Scholar 

  178. Wu MC, Lan KKG. Sequential monitoring for comparison of changes in a response variable in clinical studies. Biometrics 1992;48:765–779.

    Article  MATH  Google Scholar 

  179. Gange SJ, DeMets DL. Sequential monitoring of clinical trials with correlated responses. Biometrika 1996;83:157–167.

    Article  MATH  MathSciNet  Google Scholar 

  180. Fairbanks K, Madsen R. P values for tests using a repeated significance test design. Biometrika 1982;69:69–74.

    MathSciNet  Google Scholar 

  181. Tsiatis AA, Rosner GL, Mehta CR. Exact confidence intervals following a group sequential test. Biometrics 1984;40:797–803.

    Article  MATH  MathSciNet  Google Scholar 

  182. Emerson SS, Fleming TR. Parameter estimation following group sequential hypothesis testing. Biometrika 1990;77:875–892.

    Article  MathSciNet  Google Scholar 

  183. Hughes MD, Pocock SJ. Stopping rules and estimation problems in clinical trials. Stat Med 1988;7:1231–1242.

    Article  Google Scholar 

  184. Kim K. Point estimation following group sequential tests. Biometrics 1989;45:613–617.

    Article  MATH  Google Scholar 

  185. Kim K, DeMets DL. Confidence intervals following group sequential tests in clinical trials. Biometrics 1987;4:857–864.

    Article  MathSciNet  Google Scholar 

  186. Pocock SJ, Hughes MD. Practical problems in interim analyses, with particular regard to estimation. Control Clin Trials 1989;10(Suppl):209S–221S.

    Google Scholar 

  187. Rosner GL, Tsiatis AA. Exact confidence intervals following a group sequential trial: A comparison of methods. Biometrika 1988;75:723–729.

    Article  MATH  Google Scholar 

  188. Siegmund D. Estimation following sequential tests. Biometrika 1978;65:341–349.

    MATH  MathSciNet  Google Scholar 

  189. Whitehead J, Facey KM. Analysis after a sequential trial: A comparison of orderings of the sample space. Presented at the Joint Society for Clinical Trials/International Society for Clinical Biostatistics, Brussels, 1991.

    Google Scholar 

  190. Chang MN, O’Brien PC. Confidence intervals following group sequential tests. Control Clin Trials 1986;7:18–26.

    Article  Google Scholar 

  191. Whitehead J. On the bias of maximum likelihood estimation following a sequential test. Biometrika 1986;73:573–581.

    Article  MATH  MathSciNet  Google Scholar 

  192. Jennison C, Turnbull BW. Repeated confidence intervals for group sequential clinical trials. Control Clin Trials 1984;5:33–45.

    Article  Google Scholar 

  193. Jennison C, Turnbull BW. Interim analyses: The repeated confidence interval approach. J R Stat Soc Series B Stat Methodol 1989;51:305–334; discussion: 334–361.

    MATH  MathSciNet  Google Scholar 

  194. DeMets DL, Lan KKG. Discussion of: Interim analyses: The repeated confidence interval approach by C. Jennison and B.W. Turnbull. J R Stat Soc Series B Stat Methodol 1989;51:344.

    Google Scholar 

  195. Fleming TR. Evaluation of active control trials in AIDS. J Acquir Immune Defic Syndr 1990;3(Suppl):S82–S87.

    Google Scholar 

  196. Fleming TR. Treatment evaluation in active control studies. Cancer Treat Rep 1987;17:1061–1065.

    Google Scholar 

  197. DeMets DL, Ware JH. Group sequential methods in clinical trials with a one-sided hypothesis. Biometrika 1980;67:651–660.

    Article  MathSciNet  Google Scholar 

  198. DeMets DL, Ware JH. Asymmetric group sequential boundaries for monitoring clinical trials. Biometrika 1982;69:661–663.

    Article  Google Scholar 

  199. Emerson SS, Fleming TR. Symmetric group sequential test designs. Biometrics 1989;45:905–923.

    Article  MATH  MathSciNet  Google Scholar 

  200. Gould AL, Pecore VJ. Group sequential methods for clinical trials allowing early acceptance of Ho and incorporating costs. Biometrika 1982;69:75–80.

    Google Scholar 

  201. Feyzi J, Julian D, Wikstrand J, Wedel H. Data monitoring experience in the Metoprolol CR/XL randomized intervention trial in chronic heart failure: Potentially high-risk treatment in high-risk patients. In DeMets DL, Friedman L, Furberg CD (eds.). Data Monitoring in Clinical Trials: A Case Studies Approach. New York, NY: Springer Science + Business Media, 2005, pp. 136–147

    Google Scholar 

  202. Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Boca Raton, FL: Chapman and Hall/CRC, 2000.

    MATH  Google Scholar 

  203. Proschan MA, Lan KKG, Wittes JT. Statistical Monitoring of Clinical Trials: A Unified Approach. New York, NY: Springer Science + Business Media, LLC, 2006.

    Google Scholar 

  204. Alling DR. Early decision in the Wilcoxon two sample test. J Am Stat Assoc 1963;58:713–720.

    Article  MathSciNet  Google Scholar 

  205. Alling DW. Closed sequential tests for binomial probabilities. Biometrika 1966;53:73–84.

    MATH  MathSciNet  Google Scholar 

  206. Halperin M, Ware J. Early decision in a censored Wilcoxon two-sample test for accumulating survival data. J Am Stat Assoc 1974;69:414–422.

    Article  MATH  MathSciNet  Google Scholar 

  207. DeMets DL, Halperin M. Early stopping in the two-sample problem for bounded random variables. Control Clin Trials 1982;3:1–11.

    Article  Google Scholar 

  208. Lan KKG, Simon R, Halperin M. Stochastically curtailed tests in long-term clinical trials. Commun Stat. Sequential Anal 1982;1:207–219.

    Article  MATH  MathSciNet  Google Scholar 

  209. Halperin M, Lan KKG, Ware JH, et al. An aid to data monitoring in long-term clinical trials. Control Clin Trials 1982;3:311–323.

    Article  Google Scholar 

  210. Lan KKG, Wittes J. The B-value: A tool for monitoring data. Biometrics 1988;44:579–585.

    Article  Google Scholar 

  211. DeMets DL. Futility approaches to interim monitoring by data monitoring committees. Clin Trials 2006;3:522–529.

    Article  Google Scholar 

  212. Cohn JN, Goldstein SO, Greenberg BH, et al., for the Vesnarinone Trial Investigators. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. N Engl J Med 1998;339:1810–1816.

    Article  Google Scholar 

  213. Colton T. A model for selecting one of two medical treatments. J Am Stat Assoc 1963;58:388–400.

    Article  MathSciNet  Google Scholar 

  214. Cornfield J. A Bayesian test of some classical hypotheses – with applications to sequential clinical trials. J Am Stat Assoc 1966;61:577–594.

    MathSciNet  Google Scholar 

  215. Cornfield J. Recent methodological contributions to clinical trials. Am J Epidemiol 1976;104:408–421.

    Google Scholar 

  216. Choi SC, Pepple PA. Monitoring clinical trials based on predictive probability of significance. Biometrics 1989;45:317–323.

    Article  MATH  Google Scholar 

  217. Freedman LS, Spiegelhalter DJ, Parmar MKB. The what, why, and how of Bayesian clinical trials monitoring. Stat Med 1994;13:1371–1383.

    Article  Google Scholar 

  218. Grieve AP. Predictive probability in clinical trials. Biometrics 1991;47:323–330.

    Article  Google Scholar 

  219. George SL, Li C, Berry DA, Green MR. Stopping a clinical trial early: Frequentist and Bayesian approaches applied to a CALGB trial of non-small-cell lung cancer. Stat Med 1994;13:1313–1327.

    Article  Google Scholar 

  220. Carlin BP, Louis TA. Bayes and Empirical Bayes Methods for Data Analysis (2nd edition). Boca Raton, FL: Chapman and Hall/CRC, 2000.

    Book  MATH  Google Scholar 

  221. Machin D. Discussion of “The what, why and how of Bayesian clinical trials monitoring.” Stat Med 1994;13:1385–1389.

    Article  Google Scholar 

  222. Spiegelhalter DJ. Probabilistic prediction in patient management and clinical trials. Stat Med 1986;5:421–433.

    Article  Google Scholar 

  223. Spiegelhalter DJ, Freedman LS, Blackburn PR. Monitoring clinical trials: Conditional or predictive power? Control Clin Trials 1986;7:8–17.

    Article  Google Scholar 

  224. Lau J, Antman EM, Jimenez-Silva J, et al. Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med 1992;327:248–254.

    Article  Google Scholar 

  225. Fisher LD. Self-designing clinical trials. Stat Med 1998;17:1551–1562.

    Article  Google Scholar 

  226. Shen Y, Fisher L. Statistical inference for self-designing clinical trials with a one-sided hypothesis. Biometrics 1999;55:190–197.

    Article  MATH  Google Scholar 

  227. Cui L, Hun HMJ, Wang SJ. Impact of changing sample size in a group sequential clinical trial. Proceedings of the Biopharmaceutical Section, American Statistical Association, 1997, pp. 52–57.

    Google Scholar 

  228. Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics 1995;51:1315–1324.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Friedman, L.M., Furberg, C.D., DeMets, D.L. (2010). Monitoring Response Variables. In: Fundamentals of Clinical Trials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1586-3_16

Download citation

Publish with us

Policies and ethics