Skip to main content

Robust Control of Large-Scale Systems: Efficient Selection of Inputs and Outputs

  • Chapter
  • First Online:
Structurally Constrained Controllers

Abstract

There has been a growing interest in recent years in robust control of systems with parametric uncertainty [1, 2, 3, 4, 5]. The dynamic behavior of this type of systems is typically governed by a set of differential equations whose coefficients belong to fairly-known uncertainty regions. Although there are several methods to capture the uncertain nature of a real-world system (e.g., by modeling it as a structured or unstructured uncertainty [6]), it turns out that the most realistic means of describing uncertainty is to parameterize it and then specify its domain of variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lavaei and A. G. Aghdam, “Robust stability of LTI systems over semi-algebraic sets using sum-of-squares matrix polynomials,” IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 417–423, 2008.

    Article  MathSciNet  Google Scholar 

  2. R. C. L. F. Oliveira and P. L. D. Peres, “LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions,” Systems & Control Letters, vol. 55, no. 1, pp. 52–61, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 365–370, 2005.

    Article  MathSciNet  Google Scholar 

  4. S. Kau, Y. Liu, L. Hong, C. Lee, C. Fang, and L. Lee, “A new LMI condition for robust stability of discrete-time uncertain systems,” Systems & Control Letters, vol. 54, no. 12, pp. 1195–1203, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. C. de Oliveira and J. C. Geromel, “A class of robust stability conditions where linear parameter dependence of the Lyapunov function is a necessary condition for arbitrary parameter dependence,” Systems & Control Letters, vol. 54, no. 11, pp. 1131–1134, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. E. Dullerud and F. Paganini, A course in robust control theory: A convex approach, Texts in Applied Mathematics, Springer, 2005.

    Google Scholar 

  7. A. V. Savkin and I. R. Petersen, “Weak robust controllability and observability of uncertain linear systems,” IEEE Transactions on Automatic Control, vol. 44, no. 5, pp. 1037–1041, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. A. Ugrinovskii, “Robust controllability of linear stochastic uncertain systems,” Automatica, vol. 41, no. 5, pp. 807–813, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. S. Sastry and C. A. Desoer, “The robustness of controllability and observability of linear time-varying systems,” IEEE Transactions on Automatic Control, vol. 27, pp. 933–939, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. J. Davison and T. N. Chang, ”Decentralized stabilization and pole assignment for general proper systems,” IEEE Transactions on Automatic Control, vol. 35, no. 6, pp. 652–664, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. D. Šiljak, Decentralized control of complex systems, Cambridge: Academic Press, 1991.

    Google Scholar 

  12. J. Lavaei and A. G. Aghdam, “A graph theoretic method to find decentralized fixed modes of LTI systems,” Automatica, vol. 43, no. 12, pp. 2129–2133, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Lavaei and A. G. Aghdam, “Control of continuous-time LTI systems by means of structurally constrained controllers,” Automatica, vol. 44, no. 1, pp. 141–148, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Sojoudi and A. G. Aghdam, “Characterizing all classes of LTI stabilizing structurally constrained controllers by means of combinatorics,” in Proceedings of 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007.

    Google Scholar 

  15. S. H. Wang and E. J. Davison, “On the stabilization of decentralized control systems,” IEEE Transactions on Automatic Control vol. 18, no. 5, pp. 473–478, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Blekherman, “There are significantly more nonnegative polynomials than sums of squares,” Israel Journal of Mathematics, vol. 153, no. 1, pp. 355–380, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. A. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization,” Ph.D. dissertation, California Institute of Technology, 2000.

    Google Scholar 

  18. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities. Cambridge University Press, Cambridge, UK, Second edition, 1952.

    Google Scholar 

  19. M. Putinar, “Positive polynomials on compact semi-algebraic sets,” Indiana University Mathematics Journal, vol. 42, pp. 969–984, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Lavaei and A. G. Aghdam, “Optimal periodic feedback design for continuous-time LTI systems with constrained control structure,” International Journal of Control, vol. 80, no. 2, pp. 220–230, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. W. Scherer and C. W. J. Hol, “Matrix sum-of-squares relaxations for robust semi-definite programs,” Mathematical Programming, vol. 107, no. 1–2, pp. 189–211, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. L¨ofberg, “A toolbox for modeling and optimization in MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004 (available online at http://control.ee.ethz.ch/~joloef/yalmip.php).

  23. S. Prajna, A. Papachristodoulou, P. Seiler and P. A. Parrilo, “SOSTOOLS sum of squares optimization toolbox for MATLAB,” Users guide, 2004 (available online at http://www.cds.caltech.edu/sostools).

  24. C. J. Hillar and J. Nie, “An elementary and constructive solution to Hilbert’s 17th Problem for matrices,” in Proceedings of the American Mathematical Society, vol. 136, pp. 73–76, 2008.

    Google Scholar 

  25. P.-A. Bliman, R. C. L. F. Oliveira, V. F. Montagner, and P. L. D. Peres, “Existence of homogeneous polynomial solutions for parameter-dependent linear matrix inequal- ities with parameters in the simplex,” in Proceedings of 45th IEEE Conference on Decision and Control, San Diego, USA, pp. 1486–1491, 2006.

    Google Scholar 

  26. R. C. L. F. Oliveira, M. C. de Oliveira, and P. L. D. Peres, “Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions,” Systems & Control Letters, vol. 57, no. 8, pp. 680–689, 2008.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Sojoudi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Sojoudi, S., Lavaei, J., Aghdam, A.G. (2011). Robust Control of Large-Scale Systems: Efficient Selection of Inputs and Outputs. In: Structurally Constrained Controllers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1549-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1549-8_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1548-1

  • Online ISBN: 978-1-4419-1549-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics