Skip to main content

Perspectives of Micro and Nanofabrication of Carbon for Electrochemical and Microfluidic Applications

  • Chapter
  • First Online:
Microfluidics and Microfabrication

Abstract

This chapter focuses on glass-like carbons, their method of micro and nanofabrication and their electrochemical and microfluidic applications. At first, the general properties of this material are exposed, followed by its advantages over other forms of carbon and over other materials. After an overview of the carbonization process of organic polymers we delve into the history of glass-like carbon. The bulk of the chapter deals with different fabrication tools and techniques to pattern polymers. It is shown that when it comes to carbon patterning, it is significantly easier and more convenient to shape an organic polymer and carbonize it than to machine carbon directly. Therefore the quality, dimensions and complexity of the final carbon part greatly depend on the polymer structure acting as a precursor. Current fabrication technologies allow for the patterning of polymers in a wide range of dimensions and with a great variety of tools. Even though several fabrication techniques could be employed such as casting, stamping or even Computer Numerical Controlled (CNC) machining, the focus of this chapter is on photolithography, given its precise control over the fabrication process and its reproducibility. Next Generation Lithography (NGL) tools are also covered as a viable way to achieve nanometer-sized carbon features. These tools include electron beam (e-beam), Focused-ion beam (FIB), Nano Imprint Lithography (NIL) and Step-and-Flash Imprint Lithography (SFIL). At last, the use of glass-like carbon in three applications, related to microfluidics and electrochemistry, is discussed: Dielectrophoresis, Electrochemical sensors, and Fuel Cells. It is exposed how in these applications glass-like carbon offers an advantage over other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some crystals do not usually break in any particular direction, reflecting roughly equal bond strengths throughout the crystal structure. Breakage in such materials is known as fracture. The term conchoidal is used to describe fracture with smooth, curved surfaces that resemble the interior of a seashell; it is commonly observed in quartz and glass. Conchoidal fracture. (2009). In Encyclopaedia Britannica. Retrieved April 08, 2009, from Encyclopaedia Britannica Online: http://www.britannica.com

  2. 2.

    Char is a solid decomposition product of a natural or synthetic organic material. If the precursor has not passed through a fluid stage, char will retain the characteristic shape of the precursor (although becoming of smaller size). For such materials the term “pseudomorphous” has been used. In contrast, coke is produced by pyrolysis of organic materials that have passed, at least in part, through a liquid or liquid-crystalline state during the carbonization process.

  3. 3.

    Poly(methyl methacrylate) (PMMA) or poly(methyl 2-methylpropenoate) is the synthetic polymer of methyl methacrylate. This thermoplastic and transparent plastic is sold by the trade names Plexiglas, Limacryl, R-Cast, Perspex, Plazcryl, Acrylex, Acrylite, Acrylplast, Altuglas, Polycast and Lucite and is commonly called acrylic glass or simply acrylic.

  4. 4.

    FDEP is given by the equation 2πɛmr3Re[fCM]grad(Erms 2) where ɛm is the permittivity of the medium, r is the particle radius, Re[fCM] denotes the real part of the Clausius-Mossotti factor and grad(Erms 2) illustrates an electric field gradient. E is given by V/d where V is the voltage applied to the electrodes and d represents the distance between them.

  5. 5.

    This difference is given by the Clausius-Mossotti factor. This factor is named after the Italian physicist Ottaviano-Fabrizio Mossotti, whose 1850 book analyzed the relationship between the dielectric constants of two different media, and the German physicist Rudolf Clausius, who gave the formula explicitly in his 1879 book in the context not of dielectric constants but of indices of refraction. The Clausius-Mossotti factor is given by (ɛp 5–ɛm 5)/(ɛp 5+2ɛm 5). ɛ5denotes complex permittivity and is given by ɛ + (σ/iω) where ɛ is the permittivity, σ is conductivity, i denotes the square root of −1 and ω is the angular frequency of the applied electric field; p and m denote particle and media respectively.

References

  1. Ferchault de Reaumur R (1722) L’art de convertir le fer forge en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forge. Available from http://www.books.google.com.

  2. Lavoisier A (1789) Traite Elementaire de Chimie. Available from http://gallica.bnf.fr/.

  3. Shevlin PB (1972) Formation of atomic carbon in the decomposition of 5-tetra-zolyldiazonium chloride. J. Am. Chem. Soc. 94:1379–1380.

    Article  Google Scholar 

  4. Dewar MJS, Nelson DJ, Shevlin PB, and Biesiada KA (1981) Experimental and theoretical investigation of the mechanism of deoxygenation of carbonyl compounds by atomic carbon. J. Am. Chem. Soc. 103:2802–2807.

    Article  Google Scholar 

  5. Sladkov AM, Kasatochkin VI, Kudryavstev YP, and Korshak VV (1968) Synthesis and properties of valuable polymers of carbon. Russ. Chem. Bull. 17:2560–2566.

    Article  Google Scholar 

  6. Sergushin IP, Kudryavstev YP, Elizen VM et al. (1977) X-ray Electron and X-ray spectral study of Carbyne. J. Struct. Chem. 18:698–700.

    Google Scholar 

  7. Whittaker AG (1978) Carbon: A new view of its high-temperature behavior. Science. 200:763–764.

    Article  Google Scholar 

  8. Smith PPK and Buseck PR (1982) Carbyne forms of carbon: Do they exist? Science 216:984–986.

    Article  Google Scholar 

  9. Whittaker AG (1985) Carbyne forms of carbon: Evidence for their existence. Science 229:485–486.

    Article  Google Scholar 

  10. Lagow RJ, Kampa JJ, Wei H et al. (1995) Synthesis of linear acetylenic carbon: The “sp” carbon allotrope. Science 267:362–367.

    Article  Google Scholar 

  11. Baughman RH (2006) Chemistry: Dangerously seeking linear carbon. Science. 312:1009–1010.

    Article  Google Scholar 

  12. Frondel C and Martin UB (1967) Lonsdaleite, a Hexagonal polymorph of diamond. Nature. 214:587–589.

    Article  Google Scholar 

  13. Bundy FP and Kasper JS (1967) Hexagonal diamond – a new form of carbon. J. Chem. Phys. 46:3437–3446.

    Article  Google Scholar 

  14. Kroto HW, Heath JR, O'Brien SC, Curl RF, and Smalley RE (1985) C60: Buckminsterfullerene. Nature. 318:162–163.

    Article  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV et al. (2004) Electric field effect in atomically thin carbon films. Science. 306:666–669.

    Article  Google Scholar 

  16. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, and Roth S (2007) The structrue of suspended graphene sheets. Nature. 446:60–63.

    Article  Google Scholar 

  17. Geim AK and Kim P (2008) Carbon wonderland. Scientific American. 298:68–75.

    Google Scholar 

  18. Rode AV, Gamalay EG, and Luther-Davies B (2000) Formation of cluster-assembled carbon nano-foam by high repetition-rate laser ablation. Appl. Phys. A. 70:135–144.

    Article  Google Scholar 

  19. Rode AV, Gamalay E, and Luther-Davies B (2002) Electronic and Magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation. Appl. Surf. Sci. 197:644–649.

    Article  Google Scholar 

  20. Rode AV, Gamalay E, Christy AG et al. (2004) Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B. 70:054407-1-054407-9.

    Article  Google Scholar 

  21. Rode AV, Gamalay E, Christy AG et al. (2005) Strong paramagnetism and possible ferromagnetis in pure carbon nanofoam produced by laser ablation. J. Magn. Magn. Mater. 290–291:298–301.

    Article  Google Scholar 

  22. Sullivan JP, Friedmann TA, and Hjort K (2001) Diamond and amorphous carbon MEMS. MRS Bulletin. April:309–311.

    Article  Google Scholar 

  23. Robertson J (2002) Diamond-like amorphous carbon. Mat. Sci. Eng. R. 37:129–281.

    Article  Google Scholar 

  24. Hauser JJ (1977) Electrical, structural and optical properties of amorphous carbon. J. Non-Cryst. Solids. 23:21–41.

    Article  Google Scholar 

  25. Andersson L (1981) A review of recent work on hard i-C films. Thin Solid Films. 86:193–200.

    Article  Google Scholar 

  26. Robertson J (1986) Amorphous carbon. Adv. Phys. 35:317–375.

    Article  Google Scholar 

  27. Robertson J (1991) Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 21:199–333.

    Article  Google Scholar 

  28. Fitzer E, Kochling KH, Boehm HP, and Marsh H (1995) Recommended terminology for the description of carbon as a solid. Pure Appl. Chem. 67:473–506.

    Article  Google Scholar 

  29. Anderson PW (1958) Abscence of diffusion in certain random lattices. Phys. Rev. 109:1492–1505.

    Article  Google Scholar 

  30. Dobbs HS (1974) Vitreous Carbon and the brittle fracture of amorphous solids. J. Phys. D: Appl. Phys. 7:24–34.

    Article  Google Scholar 

  31. Bragg RH and Hammond ML (1965) X-ray study of pyrolytic graphites and glassy carbons. Carbon. 3:340–340.

    Article  Google Scholar 

  32. Rothwell WS (1968) Small-angle x-ray scattering from glassy carbon. J. Appl. Phys. 39:1840–1845.

    Article  Google Scholar 

  33. McFeely SP, Kowalczyk SP, Ley L, Cavell RG, Pollak RA, and Shirley DA (1974) X-ray photoemission studies of diamond, graphite, and glassy carbon valence bands. Phys. Rev. B. 9:5268–5278.

    Article  Google Scholar 

  34. Nishikawa K, Fukuyama K, and Nishizawa T (1998) Structure change of glass-like carbon with heat treatment, studied by small angle x-ray scattering: i. glass-like carbon prepared from phenolic resin. Jpn. J. Appl. Phys. 37:6486–6491.

    Article  Google Scholar 

  35. Fukuyama K, Nishizawa T, and Nishikawa K (2001) Investigation of the pore structure in glass-like carbon prepared from furan resin. Carbon. 39:2017–2021.

    Article  Google Scholar 

  36. Iwashita N, Park CR, Fujimoto H, Shiraishi M, and Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon. 42:701–714.

    Article  Google Scholar 

  37. Dekanski A, Stevanovic J, Stevanovic R, Nikolic BZ, and Jovanovic VM (2001) Glassy carbon electrodes: I. Characterization and electrochemical activation. Carbon 39:1195–1205.

    Article  Google Scholar 

  38. Oberlin A and Oberlin M (1983) Graphitizability of carbonaceous materials as studied by TEM and X-ray diffraction. J. Microsc. 132:353–363.

    Article  Google Scholar 

  39. Yamada S and Sato H (1962) Some physical properties of glassy carbon. Nature 193:261–262.

    Article  Google Scholar 

  40. Lewis JC, Redfern B, and Cowlard FC (1963) Vitreous carbon as a crucible material for semiconductors. Sol. State Electron. 6:251–254.

    Article  Google Scholar 

  41. Cowlard FC and Lewis JC (1967) Vitreous carbon – a new form of carbon. J. Mater. Sci. 2:507–512.

    Article  Google Scholar 

  42. Cahn W and Harris B (1969) Newer forms of carbon and their uses. Nature. 221:132–141.

    Article  Google Scholar 

  43. Halpin MK and Jenkins GM (1969) Interaction of glassy carbon with alkali metal vapours. Proc. R. Soc. Lond. A. 313:421–431.

    Article  Google Scholar 

  44. Jenkins GM and Kawamura K (1976) Polymeric Carbon – Carbon Fibre, Glass and Char. Cambridge University Press, London, New York.

    Google Scholar 

  45. Wang C, Jia G, Taherabadi LH, and Madou MJ (2005) A novel method for the fabrication of high-aspect ratio C-MEMS structures. J. MEMS. 14:348–358.

    Article  Google Scholar 

  46. Jenkins GM, Kawamura K, and Ban LL (1972) Formation and structure of polymeric carbons. Proc. R. Soc. Lond. A. 327:501–517.

    Article  Google Scholar 

  47. Kakinoki J (1965) A model for the structure of “glassy carbon”. Acta. Cryst. 18:578.

    Article  Google Scholar 

  48. Jenkins GM and Kawamura K (1971) Structure of glassy carbon. Nature. 231:175–176.

    Article  Google Scholar 

  49. Pesin LA (2002) Structure and Properties of glass-like carbon. J. Mater. Sci. 37:1–28.

    Article  Google Scholar 

  50. Shiraishi M (1984) Kaitei Tansozairyo Nyumon (Introduction to Carbon Materials). Tanso Zairyo Gakkai 29–33.

    Google Scholar 

  51. Fedorov VB, Shorshorov MK, and Khakimova DK (1978) Carbon and its interaction with metals [in Russian]. Metallurgiya, Moscow:119–129.

    Google Scholar 

  52. Pesin LA and Baitinger EM (2002) A new structural model of glass-like carbon. Carbon. 40:295–306.

    Article  Google Scholar 

  53. Yoshida A, Kaburagi Y, and Hishiyama Y (1991) Microtexture and magnetoresistance of glass-like carbons. Carbon. 29:1107–1111.

    Article  Google Scholar 

  54. Fitzer E, Schaefer W, and Yamada S (1969) The formation of glasslike carbon by pyrolysis of polyfurfuryl alcohol and phenolic resin. Carbon. 7:643.

    Article  Google Scholar 

  55. Vohler O, Reiser P, Martina R, and Ovrehoff D (1970) New forms of Carbon. Angew. Chem. Int. Ed. Engl. 9:414–425.

    Article  Google Scholar 

  56. Kawamura K and Kimura S (1983) Glass-like carbon made from epoxy resin cured with 2, 4, 6-Trinitrophenol. Bull. Chem. Soc. Jpn. 56:2499–2503.

    Article  Google Scholar 

  57. Aggarwal RK, Bhatia G, Bahl OP, and Malik M (1988) Development of glass-like carbon from phenol formaldehyde resins employing monohydric and dihydric phenols. J. Mater. Sci. 23:1677–1684.

    Article  Google Scholar 

  58. Callstrom MR, Neenan TX, McCreery RL, and Alsmeyer DC (1990) Doped glassy carbon materials (DGC): low-temperature synthesis, structure, and catalytic behavior. J. Am. Chem. Soc. 112:4954–4956.

    Article  Google Scholar 

  59. Neenan TX, Callstrom MR, Bachman BJ, McCreery RL, and Alsmeyer DC (1990) Doped glassy carbon materials (DGC): Their synthesis from polymeric precursors and investigation of their properties. Br. Polym. J. 23:171–177.

    Article  Google Scholar 

  60. Hutton HD, Huang W, Alsmeyer DC et al. (1993) Synthesis, characterization, and electrochemical activity of halogen-doped glassy carbon. Chem. Mater. 5:1110–1117.

    Article  Google Scholar 

  61. Schueller OJA, Brittain ST, and Whitesides GM (1997) Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors. Adv. Mater. 9:477–480.

    Article  Google Scholar 

  62. Shah HV, Brittain ST, Huang Q, Hwu S-, Whitesides GM, and Smith DW (1999) Bis-o-diynylarene (BODA) Derived polynaphthalenes as precursors to glassy carbon microstructures. Chem. Mater. 11:2623–2625.

    Article  Google Scholar 

  63. Hishiyama Y, Igarashi K, Kanaoka I et al. (1997) Graphitization behavior of Kapton-derived carbon film related to structure, microtexture and transport properties. Carbon. 35:657–668.

    Article  Google Scholar 

  64. Kim J, Song X, Kinoshita K, Madou M, and White R (1998) Electrochemical studies of carbon films from pyrolyzed photoresist. J. Electrochem. Soc. 145:2314–2319.

    Article  Google Scholar 

  65. Ranganathan S, McCreery RL, Majji SM, and Madou M (2000) Photoresist-derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 147:277–282.

    Article  Google Scholar 

  66. Singh A, Jayaram J, Madou M, and Akbar S (2002) Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 149:E78–E83.

    Article  Google Scholar 

  67. Malladi K, Wang C, and Madou M (2006) Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis. Carbon. 44:2602–2607.

    Article  Google Scholar 

  68. Lee L (1965) Mechanisms of thermal degradation of phenolic condensation polymers. II. Thermal stability and degradation schemes of epoxy resins. J. Polym. Sci: Part A. 3:859–882.

    Google Scholar 

  69. Fitzer E and Schafer W (1970) The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon. 8:353–364.

    Article  Google Scholar 

  70. Gac NA, Spokes GN, and Benson SW (1970) Thermal degradation of nadic methyl anhydride-cured epoxy novolac. J Polym Sci A. 8:593–608.

    Article  Google Scholar 

  71. Jenkins GM, Kawamura K, and Ban LL (1972) Formation and structure of polymeric carbons. Proc. R. Soc. Lon. A. 327:501–517.

    Article  Google Scholar 

  72. Lyons AM, Wilkins CW, and Robbins M (1983) Thin pinhole-free Carbon films. Thin Solid Films. 103:333–341.

    Google Scholar 

  73. Nakagawa H and Tsuge S (1987) Studies on thermal degradation of epoxy resins by high-resolution pyrolysis-gas chromatography. J. Anal. Appl. Pyrolysis. 12:97–113.

    Article  Google Scholar 

  74. Chen KS and Yeh RZ (1996) Pyrolysis kinetics of epoxy resin in a nitrogen atmosphere. J. Hazard. Mater. 49:105–113.

    Article  Google Scholar 

  75. Beyler CL and Hirschler MM (2002) Thermal decomposition of polymers. In: SFPE Handbook of Fire Protection Engineering.

    Google Scholar 

  76. Ma CM, Chen C, Kuan H, and Chang W (2004) Processability, Thermal, Mechanical, and Morphological Properties of Novolac Type-Epoxy Resin-Based Carbon-Carbon Composite. J. Comp. Mater. 38:311–322.

    Article  Google Scholar 

  77. Mehrotra BN, Bragg RH, and Rao AS (1983) Effect of heat treatment temperature (HTT) on density, weight and volume of glass-like carbon (GC). J. Mater. Sci. 18:2671–2678.

    Article  Google Scholar 

  78. Spain IL (1981) The electronic transport properties of graphite, carbons, and related materials. In: Walker Jr. PL and Thrower PA (eds) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.

    Google Scholar 

  79. Pocard NL, Alsmeyer DC, McCreery RL, Neenan TX, and Callstrom MR (1992) Doped glassy carbon: A new material for electrocatalysis. J. Mater. Chem. 2:771–784.

    Article  Google Scholar 

  80. Weintraub E and Miller LB (1915) Microphone. 1156509.

    Google Scholar 

  81. Davidson HW (1962) The properties of G. E. C. impermeable carbon. Nucl. Eng. 7:159–161.

    Google Scholar 

  82. Redfern B and Greens N (1963) Bodies and Shapes of Carbonaceous Materials and Processes for their Production. US 3109712.

    Google Scholar 

  83. Kotlensky WV and Martens HE (1965) Tensile properties of glassy carbon to 2,900 C. Nature. 206:1246–1247.

    Article  Google Scholar 

  84. Zittel HE and Miller FJ (1965) A Glassy-carbon electrode for voltammetry. Anal. Chem. 37:200–203.

    Article  Google Scholar 

  85. Lewis JB, Murdoch R, and Moul AN (1969) Heat of combustion of vitreous carbon. Nature. 221:1137–1138.

    Article  Google Scholar 

  86. Benson J (1969) Carbon offers advantages as implant material in human body. NASA Technical Brief.

    Google Scholar 

  87. Benson J (1971) Elemental carbon as a biomaterial. J. Biomed. Mater. Res. 5:41–47.

    Article  Google Scholar 

  88. Von Fraunhofer JA, L'estrange PR, and Mack AO (1971) Materials science in dental implantation and a promising new material: vitreous carbon. Biomed. Eng. 6:114–118.

    Google Scholar 

  89. Hucke EE, Fuys RA, and Craig RG (1973) Glassy Carbon: a potential Dental Implant Material. J. Biomed. Mater. Res. 7:263–274.

    Article  Google Scholar 

  90. Stanitski CL and Mooney V (1973) Osseus attachment to vitreous carbons. J. Biomed. Mater. Res. 7:97–108.

    Article  Google Scholar 

  91. Hobkirk JA (1976) Tissue reactions to implanted vitreous carbon and high purity sintered alumina. J. Oral. Rehabil. 4:355–368.

    Article  Google Scholar 

  92. Haubold A (1977) Carbon in prosthetics. Annals of the New York Academy of Sciences. 283:383–395.

    Article  Google Scholar 

  93. Maropis PS, Molinari JA, Appel BN, and Baumhammers A (1977) Comparative study of vitreous carbon, pyrolytic carbon, pyrolytic graphite/silicon-carbide, and titanium implants in rabbit mandibules. Oral Surg. Oral Med. Oral Pathol. 43:506–512.

    Article  Google Scholar 

  94. Sherman AJ (1978) Bone reaction to orthodontic forces on vitreous carbon dental implants. Am. J. Orthod. 74:79–87.

    Article  MathSciNet  Google Scholar 

  95. Jenkins GM and Grigson CJ (1979) The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications. J. Biomed. Mater. Res. 13:371–394.

    Article  Google Scholar 

  96. Williams MW (1972) Optical properties of glassy carbon from 0 to 82 eV. J. Appl. Phys. 43:3460–3463.

    Article  Google Scholar 

  97. Taylor RJ and Humffray AA (1973) Electrochemical studies on glassy carbon electrodes I. Electron-transfer kinetics. J. Electroanal. Chem. 42:347–354.

    Google Scholar 

  98. Nathan MI, Smith JE, and Tu KN (1974) Raman spectra of glassy carbon. J. Appl. Phys. 45:2370–2370.

    Article  Google Scholar 

  99. Blaedel WJ and Jenkins RA (1974) Steady-state voltammetry at glassy carbon electrodes. Anal. Chem. 46:1952–1955.

    Article  Google Scholar 

  100. Taylor RJ and Humffray AA (1975) Electrochemical studies on glassy carbon electrodes II. Oxygen reduction in solutions of high pH. J. Electroanal. Chem. 64:63–84.

    Google Scholar 

  101. Norvell VE and Mamantov G (1977) Optically transparent vitreous carbon electrode. Anal. Chem. 49:1470–1472.

    Article  Google Scholar 

  102. Shigemitsu T and Matsumoto G (1979) Electrical Properties of glassy-carbon Electrodes. Med. Biol. Eng. Comput. 17:470.

    Article  Google Scholar 

  103. Bourdillon C, Bourgeois JP, and Thomas D (1980) Covalent Linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena. J. Am. Chem. Soc. 102:4231–4235.

    Article  Google Scholar 

  104. Van der Linden, WE and Dieker JW (1980) Glassy carbon as electrode material for electro analytical chemistry. Anal. Chim. Acta. 119:1–24.

    Article  Google Scholar 

  105. Hebert NE, Snyder B, McCreery RL, Kuhr WG, and Brazil SA (2003) Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal. Chem. 75:4265–4271.

    Article  Google Scholar 

  106. McCreery RL (1991) Carbon electrodes: structural effects on electron transfer kinetics. In: Bard AJ (ed) Electroanalytical Chemistry, Marcel Dekker, New York.

    Google Scholar 

  107. Kinoshita K (1988) Carbon, Electrochemical and Physicochemical Properties. Wiley-Interscience, New York.

    Google Scholar 

  108. Fitzer E, Mueller K, and Schaefer W (1971) The chemistry of the pyrolytic conversion of organic compounds to carbon. In: Walker Jr. PL (ed) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.

    Google Scholar 

  109. Oberlin A (1989) High-Resolution TEM studies of carbonization and graphitization. In: Thrower PA (ed) Chemistry and Physics of Carbon, Marcel Dekker, Inc., New York.

    Google Scholar 

  110. Wang J (1981) Reticulated vitreous carbon – a new versatile electrode material. Electrochim. Acta. 26:1721–1726.

    Article  Google Scholar 

  111. Friedrich JM, Ponce-de-Leon C, Reade GW, and Walsh FC (2004) Reticulated vitreous carbon as an electrode material. J. Electroanal. Chem. 561:203–217.

    Article  Google Scholar 

  112. Schueller OJA, Brittain ST, Marzolin C, and Whitesides GM (1997) Fabrication and Characterization of Glassy Carbon MEMS. Chem. Mater. 9:1399–1406.

    Article  Google Scholar 

  113. Schueller OJA, Brittain ST, and Whitesides GM (1999) Fabrication of glassy carbon microstructures by soft lithography. Sens. Actuators A: Phys. 72:125–139.

    Article  Google Scholar 

  114. Schueller OJA, Brittain S, and Whitesides GM (2000) Fabrication of Carbon Microstructures.6143412.

    Google Scholar 

  115. Zhao X, Xia Y, Schueller OJA, Qin D, and Whitesides GM (1998) Fabrication of microstructures using shrinkable polystyrene films. Sens. Actuators A: Phys. 65:209–217.

    Article  Google Scholar 

  116. Kostecki R, Song X, and Kinoshita K (2000) Influence of geometry on the electrochemical response of carbon interdigitated microelectrodes. J. Electrochem. Soc. 147:1878–1881.

    Article  Google Scholar 

  117. Ranganathan S and McCreery RL (2001) Electroanalytical performance of carbon films with near-atomics flatness. Anal. Chem. 73:893–900.

    Article  Google Scholar 

  118. Lorenz H, Despont M, Fahrni M, LaBianca N, Vettiger P, and Renaud P (1997) SU-8: a low-cost negative resist for MEMS. J. Micromech. Microeng. 7:121.

    Article  Google Scholar 

  119. Shaw JM, Gelorme JD, LaBianca NC, Conley WE, and Holmes SJ (1997) Negative photoresists for optical lithography. IBM J. Res. Dev. 41:81–94.

    Article  Google Scholar 

  120. Wang C and Madou M (2005) From MEMS to NEMS with carbon. Biosens. Bioelectron. 20:2181–2187.

    Article  Google Scholar 

  121. Park BY, Taherabadi L, Wang C, Zoval J, and Madou MJ (2005) Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media. J. Electrochem. Soc. 152:J136–J143.

    Article  Google Scholar 

  122. Wang C, Taherabadi L, Jia G, Madou M, Yeh Y, and Dunn B (2004) C-MEMS for the manufacture of 3D microbatteries. Electrochem. Solid-State Lett. 7:A435–A438.

    Article  Google Scholar 

  123. Galobardes F, Wang C, and Madou M (2006) Investigation on the solid electrolyte interface formed on pyrolyzed photoresist carbon anodes for C-MEMS lithium-ion batteries. Diam. Relat. Mater. 15:1930–1934.

    Article  Google Scholar 

  124. Min H, Park BY, Taherabadi L et al. (2008) Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources. 178:795–800.

    Article  Google Scholar 

  125. Teixidor GT, Zaouk RB, Park BY, and Madou MJ (2008) Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries. J. Power Sources. 183:730–740.

    Article  Google Scholar 

  126. Park BY and Madou MJ (2006) Design, fabrication, and initial testing of a miniature PEM fuel cell with micro-scale pyrolyzed carbon fluidic plates. J. Power Sources. 162:369–379.

    Article  Google Scholar 

  127. Lin P, Park BY, and Madou MJ (2008) Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates. J. Power Sources. 176:207–214.

    Article  Google Scholar 

  128. Xu H, Malladi K, Wang C, Kulinsky L, Song M, and Madou M (2008) Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23:1637–1644.

    Article  Google Scholar 

  129. Turon Teixidor G, Gorkin III RA, Tripathi PP et al. (2008) Carbon microelectromechanical systems as a substratum for cell growth. Biomed. Mater. 3:034116.

    Article  Google Scholar 

  130. Park BY and Madou MJ (2005) 3-D electrode designs for flow-through dielectrophoretic systems. Electrophoresis. 26:3745–3757.

    Article  Google Scholar 

  131. Martinez-Duarte R, Rouabah HA, Green NG, Madou M, and Morgan H (2007) Higher Efficiency and Throughput in Particle Separation with 3D Dielectrophoresis with C-MEMS. Proceedings of uTAS 2007: Paris, France, October 7–11 1:826–828.

    Google Scholar 

  132. Martinez-Duarte R, Andrade-Roman J, Martinez SO, and Madou MJ (2008) A High Throughput Multi-stage, Multi-frequency Filter and Separation Device based on Carbon Dielectrophoresis. Proceedings of NSTI Nanotech 2008: Boston, MA, June 1–5 3:316–319.

    Google Scholar 

  133. Martinez-Duarte R, Cito S, Collado-Arredondo E, Martinez SO, and Madou M (2008) Fluido-dynamic and Electromagnetic Characterization of 3D Carbon Dielectrophoresis with Finite Element Analysis. Proceedings of NSTI Nanotech 2008: Boston, MA, 3:265–268.

    Google Scholar 

  134. Martinez-Duarte R, Cito S, Collado-Arredondo E, Martinez SO, and Madou MJ (2008) Fluido-dynamic and electromagnetic characterization of 3D carbon dielectrophoresis with finite element analysis. Sens. Transd. J. 3:25–36.

    Google Scholar 

  135. Martinez-Duarte R, Gorkin R, Abi-Samra K, and Madou MJ (2009) The integration of 3D carbon dielectrophoresis on a rotating platform. Proc. Transd. 2009: Denver, CO, June 21–25: 2147–2150.

    Google Scholar 

  136. Madou MJ, Park BY, and Paradiso AC (2006) Method and Apparatus for Dielectrophoretic Separation.US 2006/0260944A1.

    Google Scholar 

  137. Park BY, Zaouk R, and Madou M (2004) Validation of lithography based on the controlled movement of light-emitting particles. Proc. Soc. Photo Opt. Instrum. Eng. 5374:566–578.

    Google Scholar 

  138. Martinez-Duarte R, Madou MJ, Kumar G, and Schroers J (2009) A Novel Method for Amorphous Metal Micromolding using Carbon MEMS. Proc. Transd. 2009.: June 21–25: 188–191.

    Google Scholar 

  139. Park BY, Zaouk R, Wang C, and Madou MJ (2007) A case for fractal electrodes in electrochemical applications. J. Electrochem. Soc. 154:P1–P5.

    Article  Google Scholar 

  140. Sharma CS, Kulkarni MM, Sharma A, and Madou M (2009) Synthesis of carbon xerogel particles and fractal-like structures. Chem. Eng. Sci. 64:1536–1543.

    Article  Google Scholar 

  141. Jeong OC and Konishi S (2008) Three-dimensionally combined carbonized polymer sensor and heater. Sens. Actuators. A. 143:97–105.

    Article  Google Scholar 

  142. oleman JN, Khan U, Blau WJ, and Gun’ko YK (2006) Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon. 44:1624–1652.

    Article  Google Scholar 

  143. Hafner JH, Bronikowski MJ, Azamian BR et al. (1998) Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296:195–202.

    Article  Google Scholar 

  144. Madou MJ (2009) Manufacturing Techniques for Microfabrication and Nanotechnology. CRC Press, Boca Raton, FL.

    Google Scholar 

  145. Metz TE, Savage RN, and Simmons HO (1992) In Situ Control of Photoresist Coating Processes. Semicond. Int. 15:68–69.

    Google Scholar 

  146. Thompson LF (1994) An introduction to lithography. In: Thompson LF, Willson CG, and Bowden MJ (eds) Introduction to Microlithography, 2nd edn. American Chemical Society, Washington, DC.

    Google Scholar 

  147. Webster RJ (1998) Thin film polymer dielectrics for high-voltage applications under severe environments. Master of Science in Electrical Engineering, Virginia Polytechnic Institute and State University.

    Google Scholar 

  148. Chilton JA and Goosey MT (1995) Special Polymers for Electronics and Optoelectronics, Chapman and Hall, London, 351.

    Book  Google Scholar 

  149. Madou M and Florkey J (2000) From Batch to Continuous Manufacturing of Microbiomedical Devices. Chem. Rev. 100:2679–2691.

    Article  Google Scholar 

  150. Reichmanis R, Nalamasu O, Houlihan FM, and Novembre AE (1999) Radiation chemistry of polymeric materials. Polym. Int. 48:1053–1059.

    Article  Google Scholar 

  151. Shaw JM, Gelorme JD, LaBianca NC, Conley WE, and Holmes SJ (1996) Negative photoresists for optical lithography. IBM J. Res. Dev. 41:81–94.

    Article  Google Scholar 

  152. Ito H (1996) Chemical amplification resists: History and development within IBM. IBM J. Res. Dev. 41:69–80.

    Google Scholar 

  153. Gelorme JD, Cox RJ, and Gutierrez SAR (1989) Photoresist Composition and Printed Circuit Boards and Packages made therewith. 4882245.

    Google Scholar 

  154. Angelo R, Gelorme J, Kucynski J, Lawrence W, Pappas S, and Simpson L (1992) Photocurable epoxy composition with sulfonium salt photoinitiator.5102772.

    Google Scholar 

  155. Harris TW (1976) Chemical Milling. Clarendon Press, Oxford.

    Google Scholar 

  156. Reznikova EF, Mohr J, and Hein H (2005) Deep Photo-Lithography Characterization of SU-8 Resist Layers. Microsys. Tech. 11:282–291.

    Article  Google Scholar 

  157. Lee SJ, Shi W, Maciel P, and Cha SW (2003) IEEE University/Government/Industry Microelectronics Symposium. Boise, ID, 389–390.

    Book  Google Scholar 

  158. Bertsch A, Lorenz H, and Renaud P (1999) 3D Microfabrication by Combining Microstereolithography and Thick Resist UV Lithography. Sens. Act. A. 73:14–23.

    Article  Google Scholar 

  159. Yang R and Wang W (2005) A numerical and experimental study on gap compensation and wavelength selection in UV-Lithography of Ultra-High Aspect Ratio SU-8 Microstructures. Sens. Act B. 110:279–288.

    Article  Google Scholar 

  160. del Campo A and Greiner C (2007) SU:8 a photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 17:R81–R95.

    Article  Google Scholar 

  161. Wolf S and Tauber RN (2000) Silicon Processing for the VLSI Era. Lattice Press, Sunset Beach.

    Google Scholar 

  162. Arnone C (1992) The laser-plotter: A versatile lithographic tool for integrated optics and microelectronics. Microelectron. Eng. 17:483–486.

    Article  Google Scholar 

  163. Duffy DC, McDonald JC, Schueller OJA, and Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984.

    Article  Google Scholar 

  164. Sure A, Dillon T, Murakowski J, Lin C, Pustai D, and Prather DW (2003) Fabrication and characterization of three-dimensional silicon tapers. Optics Express. 11:3555–3561.

    Article  Google Scholar 

  165. Windt DL and Cirelli RA (1999) Amorphous carbon films for use as both variable-transmission apertures and attenuated phase shift masks for deep ultraviolet lithography. J. Vac. Sci. Technol. B17:930–932.

    Google Scholar 

  166. Stauffer JM, Oppliger Y, Regnault P, Baraldi L, and Gale MT (1992) Electron beam writing of continuous resist profiles for optical applications. J. Vac. Sci. Technol. B10:2526.

    Google Scholar 

  167. Le Barny P (1987) In: Stroeve P and Franses E (eds) Molecular Engineering of Ultrathin Polymeric Films, Elsevier, New York.

    Google Scholar 

  168. Moreau WM (1987) Semiconductor Lithography: Principles, Practices and Materials. Springer, New York.

    Google Scholar 

  169. Cataldo A (1999) IBM Uses X-Ray Lithography to Build Prototypes. Semiconductor Business News.

    Google Scholar 

  170. Ehrfeld W and Schmidt A (1998) Recent Developments in Deep X-Ray Lithography. J. Vac. Sci. Technol. B16:3526–3534.

    Google Scholar 

  171. Rosolen GC (1999) Automatically aligned electron beam lithography on the nanometer scale. Appl. Surf. Sci. 144–145:467–471.

    Article  Google Scholar 

  172. Skjolding LHD, Teixidor GT, Emnéus J, and Montelius L Negative UV–NIL (NUV–NIL) – A mix-and-match NIL and UV strategy for realisation of nano- and micrometre structures. Microelectronic Engineering. 86:654–656.

    Google Scholar 

  173. Editorial (1991) Ion Beam Focused to 8-nm Width. Res. Dev. September:23.

    Google Scholar 

  174. Sanchez JL, van Kan JA, Osipowicz T, Springham SV, and Watt F (1998) A high resolution beam scanning system for deep ion beam lithography. Nucl. Instr. Meth. Phys. Res. B136–B38:385–389.

    Article  Google Scholar 

  175. van Kan JA, Sanchez JL, Xu B, Osipowicz T, and Watt F (1999) Micromachining using focused high energy ion beams: Deep ion beam lithography. Nucl. Instr. Meth. Phys. Res. B148:1085–1098.

    Article  Google Scholar 

  176. Seliger RL, Ward JW, Wang V, and Kubena RL (1979) A high intensity scanning ion probe with submicrometer spot size. Appl. Phys. Lett. 34:310–312.

    Article  Google Scholar 

  177. Brodie I and Muray JJ (1982) The Physics of Microfabrication. Plenum Press, New York.

    Google Scholar 

  178. Youn SW, Takahashi M, Goro H, and Maeda R (2006) A study on focused ion beam milling of glassy carbon molds for the thermal imprinting of quartz and borosilicate glasses. J. Micromech. Microeng. 16:2576–2584.

    Article  Google Scholar 

  179. Youn SW, Takahashi M, Goto H, Kobayashi T, and Maeda R (2006) The effect of heat-treatment conditions on mechanical and morphological properties of a FIB-milled glassy carbon mold with micro patterns. J. Micromech. Microeng. 16:1277–1284.

    Article  Google Scholar 

  180. Youn SW, Takahashi M, Goto H, Maeda R, and Kobayashi N (2006) AFM, SEM and Nano/micro-indentation studies of the FIB-milled glassy carbon surface heat-treated at different conditions. DTIP 2006: April 26–28, 2006.

    Google Scholar 

  181. Youn SW, Takahashi M, Goto H, and Maeda R (2006) Microstructuring of glassy carbon mold for glass embossing – Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectronic Eng. 83:2482–2492.

    Article  Google Scholar 

  182. Youn SW, Takahashi M, Goto H, and Maeda R (2007) Fabrication of micro-mold for glass embossing using focused ion beam, femto-second laser, eximer laser and dicing techniques. J. Mater. Process. Technol. 187–188:326–330.

    Article  Google Scholar 

  183. Chou SY, Krauss PR, and Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67:3114–3116.

    Article  Google Scholar 

  184. Chou SY, Krauss PR, and Renstrom PJ (1996) Imprint Lithography with 25-Nanometer Resolution. Science 272:85–87.

    Article  Google Scholar 

  185. Colburn M, Johnson S, Stewart M et al. (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE. 3676:379–389.

    Article  Google Scholar 

  186. Reyes DR, Iossifidis D, Auroux P, and Manz A (2002) Micro Total Analysis Systems. 1. Introduction, Theory and Technology. Anal. Chem. 74:2623–2636.

    Article  Google Scholar 

  187. Auroux P, Iossifidis D, Reyes DR, and Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74:2637–2652.

    Article  Google Scholar 

  188. Dittrich PS, Tachikawa K, and Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78:3887–3907.

    Article  Google Scholar 

  189. Janasek D, Franzke J, and Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature. 442:374–380.

    Article  Google Scholar 

  190. Rheea M and Burns MA (2008) Microfluidic assembly blocks. Lab Chip. 8:1365–1373.

    Article  Google Scholar 

  191. Andersson H and van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens. Actuators B: Chem. 92:315–325.

    Article  Google Scholar 

  192. Chung TD and Kim HC (2007) Recent Advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis. 28:4511–4520.

    Article  Google Scholar 

  193. Duffy DC, McDonald JC, Schueller OJA, and Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–4984.

    Article  Google Scholar 

  194. Xia Y and Whitesides GM (1998) Soft lithography. Ann. Rev. Mat. Sci. 28:153–184.

    Article  Google Scholar 

  195. Zhao X, Xia Y, and Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J. Mater. Chem. 7:1069–1074.

    Article  Google Scholar 

  196. Anderson JR, Chiu DT, Jackman RJ et al. (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal. Chem. 72:3158–3164.

    Article  Google Scholar 

  197. Becker H and Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 21:12–26.

    Article  Google Scholar 

  198. Becker H and Locascio LE (2002) Polymer microfluidic devices. Talanta. 56:267–287.

    Article  Google Scholar 

  199. del Campo A and Arzt E (2008) Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem. Rev. 108:911–945.

    Article  Google Scholar 

  200. Izumi Y, Katoh M, Ohte T, Ohtani S, Kojima A, and Saitoh N (1996) Heating effects on modifying carbon surface by reactive plasma. Appl. Surf. Sci. 100–101:179–183.

    Article  Google Scholar 

  201. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge.

    Google Scholar 

  202. Pohl HA (1958) Some effects of nonuniform fields on dielectrics. Appl. Phys. 29:1182–1188.

    Google Scholar 

  203. Sanchis A, Brown AP, Sancho M et al. (2007) Dielectric characterization of bacterial cells using dielectrophoresis. Bioelectromagnetics. 28:393–401.

    Article  Google Scholar 

  204. Minerick AR, Zhou R, Takhistov P, and Chang H-C (2003) Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis. 24:3703–3717.

    Article  Google Scholar 

  205. Hughes MP, Morgan H, and Rixon FJ (2001) Dielectrophoretic manipulation and characterization of herpes simplex virus-1 capsids. Eur. Biophys. J. Biophys. Lett. 30:268–272.

    Article  Google Scholar 

  206. Markx GH and Davey CL (1999) The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microb. Technol. 25:161–171.

    Article  Google Scholar 

  207. Crane JS and Pohl HA (1968) A study of living and dead yeast cells using dielectrophoresis. J. Electrochem. Soc. 115:584–586.

    Article  Google Scholar 

  208. Morgan H and Green NG (2003) AC Electrokinetics: Colloids and Nanoparticles. Research Studies Press LTD, Hertfordshire, England.

    Google Scholar 

  209. Ramos A, Morgan H, Green NG, and Castellanos A (1998) Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D.: Appl. Phys. 31:2338–2353.

    Article  Google Scholar 

  210. Castellanos A, Ramos A, González A, Green NG, and Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D. 36:2584–2597.

    Article  Google Scholar 

  211. Rousselet J, Markx GH, and Pethig R (1998) Separation of erythrocytes and latex beads by dielectrophoretic levitation and hyperlayer field-flow fractionation. Colloids and Surfaces A: Physiochem. Eng. Aspects. 140:209–216.

    Article  Google Scholar 

  212. Hughes MP, Morgan H, Rixon FJ, Burt JPH, and Pethig R (1998) Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochimica et Biophysica Acta-General Subjects. 1425:119–126.

    Article  Google Scholar 

  213. Becker FF, Wang X-, Huang Y, Pethig R, Vykoukal J, and Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 92:860–864.

    Article  Google Scholar 

  214. Flanagan LA, Lu J, Wang L et al. (2008) Unique dielectric properties distinguishing stem cells and their differentiated progeny. Stem Cells. 26:656–665.

    Article  Google Scholar 

  215. Lapizco-Encinas BH, Simmons BA, Cummings EB, and Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704.

    Article  Google Scholar 

  216. Srivastava SK, Pullen SA, and Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: Positive ABO blood types. Electrophoresis 29:5033–5046.

    Google Scholar 

  217. Cummings EB and Singh AK (2003) Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results. Anal. Chem. 75:4724–4731.

    Article  Google Scholar 

  218. Cummings EB and Singh AK (2000) Dielectrophoretic trapping without embedded electrodes.; September 18–19, 2000 Copyright 2003 SciSearch Plus. 4177:164–173.

    Google Scholar 

  219. Lapizco-Encinas BH, Ozuna-Chacón S, and Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and DC electric fields. J. Chromatogr. A 1206:45–51.

    Article  Google Scholar 

  220. Zheng LF, Brody JP, and Burke PJ (2004) Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosens. Bioelectron. 20:606–619.

    Article  Google Scholar 

  221. Tracy NI and Ivory CF (2008) Protein separation using preparative-scale dynamic field gradient focusing. Electrophoresis 29:2820–2827.

    Article  Google Scholar 

  222. Betts WB (1995) The potential of dielectrophoresis for the real-time detection of microorganisms in foods. Trends Food Sci. Technol. 6:51–58.

    Article  Google Scholar 

  223. Klodzinska E and Buszewski B (2009) Electrokinetic detection and characterization of intact microorganisms. Anal. Chem. 81:8–15.

    Article  Google Scholar 

  224. Markx GH, Huang Y, Zhou XF, and Pethig R (1994) Dielectrophoretic characterization and separation of microorganisms. Microbiology. 140:585–591.

    Google Scholar 

  225. Suzuki M, Yasukawa T, Shiku H, and Matsue T (2005) Separation of live and dead microorganisms in a micro-fluidic device by dielectrophoresis. Bunseki Kagaku. 54:1189–1195.

    Article  Google Scholar 

  226. Castellarnau M, Errachid A, Madrid C, Juarez A, and Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys. J. 91:3937–3945.

    Article  Google Scholar 

  227. Demierre N, Braschler T, Muller R, and Renaud P (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens. Actuators B: Chem. 132:388–396.

    Article  Google Scholar 

  228. Vahey MD and Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal. Chem. 80:3135–3143.

    Article  Google Scholar 

  229. Fatoyinbo HO, Hoettges KF, and Hughes MP (2008) Rapid-on-chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem. Electrophoresis. 29:3–10.

    Article  Google Scholar 

  230. Gascoyne P and Vykoukal J (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE. 92:22–42.

    Article  Google Scholar 

  231. Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, and Gascoyne PRC (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal. Chem. 72:832–839.

    Article  Google Scholar 

  232. Gascoyne PRC, Wang XB, Huang Y, and Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans. Ind. Appl. 33:670–678.

    Article  Google Scholar 

  233. Müller T, Fiedler S, Schnelle T, Ludwig K, Jung H, and Fuhr G (1996) High frequency electric fields for trapping of viruses. Biotechnol. Tech. 10:221–226.

    Article  Google Scholar 

  234. Ermolina I, Milner J, and Morgan H (2006) Dielectrophoretic investigation of plant virus particles: Cow pea mosaic virus and tobacco mosaic virus. Electrophoresis. 27:3939–3948.

    Article  Google Scholar 

  235. Grom F, Kentsch J, Müller T, Schnelle T, and Stelzle M (2006) Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 27:1386–1393.

    Article  Google Scholar 

  236. Berman D, Rohr ME, and Safferman RS (1980) Concentration of polio virus in water by molecular filtration. Appl. Environ. Microbiol. 40:426–428.

    Google Scholar 

  237. Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 23:2569–2582.

    Article  Google Scholar 

  238. Hughes MP (2002) Nanoelectromechanics in Engineering and Biology. CRC Press, Boca Raton, FL.

    Book  Google Scholar 

  239. Simmons BA, McGraw GJ, Davalos RV, Fiechtner GJ, Fintschenko Y, and Cummings EB (2006) The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bulletin 31:120–124.

    Article  Google Scholar 

  240. Cummings EB (2003) Streaming dielectrophoresis for continuous-flow microfluidic devices. IEEE Eng. Med. Biol. Mag. 22:75–84.

    Article  Google Scholar 

  241. Wang L, Flanagan L, and Lee AP (2007) Side-wall vertical electrodes for lateral field microfluidic applications. J. MEMS. 16:454–461.

    Article  Google Scholar 

  242. Voldman J, Gray M, Toner M, and Schmidt M (2002) A Microfabrication-based Dynamic Array Cytometer. Anal. Chem. 74:3984–3990.

    Article  Google Scholar 

  243. Illiescu C, Xu GL, Samper V, and Tay FEH (2005) Fabrication of a dielectrophoretic chip with 3D silicon electrodes. J. Micromech. Microeng. 15:494–500.

    Article  Google Scholar 

  244. Fatoyinbo H, Kamchis D, Whattingham R, Ogin SL, and Hughes M (2005) A high-throughput 3-D composite dielectrophoretic separator. IEEE Trans. Biomed. Eng. 52:1347–1349.

    Article  Google Scholar 

  245. de Paula CC, Garcia Ramos A, da Silva AC, Cocchieri Botelho E, and Rezende MC (2002) Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon. 40:787–788.

    Article  Google Scholar 

  246. Iacono ST, Perpall MW, Wapner PG, Hoffman WP, and Smith Jr. DW (2007) Carbonization and thermal expansion of glassy carbon derived from bis-ortho-diynylarenes. Carbon 45:931–935.

    Article  Google Scholar 

  247. Hull R (1999) Properties of Crystalline Silicon. The Institution of Engineering and Technology, London.

    Google Scholar 

  248. Anne A, Blanc B, Moiroux J, and Saveant JM (1998) Facile derivatization of glassy carbon surfaces by N-Hydroxysuccinimide esters in view of attaching biomolecules. Langmuir. 14:2368–2371.

    Article  Google Scholar 

  249. Nowall WB, Wipf DO, and Kuhr WG (1998) Localized avidin/biotin derivatization of glassy carbon electrodes using SECM. Anal. Chem. 70:2601–2606.

    Article  Google Scholar 

  250. Fleischmann M, Pons S, Rolison DR, and Schmidt PP (1987) Ultramicroelectrodes. Datatech Systems Inc. Morganton, NC.

    Google Scholar 

  251. Hadi M, Rouhollah A, Yousefi M, Taidy F, and Malekfar R (2006) Electrochemical Characterization of a pyrolytic carbon film electrode and the effect of anodization. Electroanalysis 18:787–792.

    Article  Google Scholar 

  252. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646–2687.

    Article  Google Scholar 

  253. Lawrence NS, Beckett EL, Davis J, and Compton RG (2002) Advances in the voltammetric analysis of small biologically relevant compounds. Anal. Biochem. 303:1–16.

    Article  Google Scholar 

  254. Aoki K and Tanaka M (1989) Time-dependence of diffusion-controlled currents of a soluble redox couple at interdigitated microarray electrodes. J. Electroanal. Chem. 266:11–20.

    Article  Google Scholar 

  255. Niwa O and Tabei H (1994) Voltammetric measurements of reversible and quasi-reversible redox species using carbon film based interdigitated array microelectrodes. Anal. Chem. 66:285–289.

    Article  Google Scholar 

  256. Dam VAT, Olthuis W, and van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst. 132:365–370.

    Article  Google Scholar 

  257. Bard AJ, Crayston JA, Kittlesen GP, Varco Shea T, and Wrighton MS (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal. Chem. 58:2321–2331.

    Article  Google Scholar 

  258. Yang X and Zhang G (2005) Diffusion-controlled redox cycling at nanoscale interdigitated electrodes. Proceedings of the COMSOL Multiphysics Conference, Boston MA.

    Google Scholar 

  259. Iwasaki Y and Morita M (1995) Electrochemical Measurements with Interdigitated Array Microelectrodes Current Separations. Curr. Sep. 14:2–8.

    Google Scholar 

  260. Spegel C, Heiskanen A, Pedersen S, Emneus J, Ruzgas T, and Taboryski R (2008) Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Lab Chip. 8:323–329.

    Article  Google Scholar 

  261. Spegel C, Heiskanen A, Skjolding LHD, and Emneus J (2008) Chip based electroanalytical systems for cell analysis. Electroanalysis 20:680–702.

    Article  Google Scholar 

  262. Tabei H, Takahashi M, Hoshino S, Niwa O, and Horiuchi T (1994) Subfemtomole detection of catecholamine with interdigitated array carbon microelectrodes in HPLC. Anal. Chem. 66:3500–3502.

    Article  Google Scholar 

  263. Fruchter L, Crepy G, and Le Mehaute A (1986) Batteries, identified fractal objects. J. Power Sources. 18:51–62.

    Article  Google Scholar 

  264. Pajkossy T (1991) Electrochemistry at fractal surfaces. J. Electroanal. Chem. 300:1–11.

    Article  Google Scholar 

  265. Whitesides GM and Grzybowski B (2002) Self-assembly at all scales. Science; Science. 295:2418–2421.

    Article  Google Scholar 

  266. Maddison DS (1993) Fractal analysis of polypyrrole deposition. Synth. Met. 57:3544–3549.

    Article  Google Scholar 

  267. Wang C, Zaouk R, and Madou M (2006) Local chemical vapor deposition of carbon nanofibers from photoresist. Carbon 44:3073–3077.

    Article  Google Scholar 

  268. Khan GF and Wernet W (1997) Design of enzyme electrodes for extended use and storage life. Anal. Chem. 69:2682–2687.

    Article  Google Scholar 

  269. de la Guardia M (1995) Biochemical sensors: The state of the art. Microchim. Acta. 120:243–255.

    Article  Google Scholar 

  270. Gorton L (1995) Carbon paste electrodes modified with enzymes, tissues, and cells. Electroanalysis 7:23–45.

    Article  Google Scholar 

  271. Heller A (1990) Electrical wiring of redox enzymes. Acc. Chem. Res. 23:128–134.

    Article  Google Scholar 

  272. Mao F, Mano N, and Heller A (2003) Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme “wiring” hydrogels. J. Am. Chem. Soc. 125:4951–4957.

    Article  Google Scholar 

  273. Wang J and Angnes L (1992) Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes. Anal. Chem. 64:456–459.

    Article  Google Scholar 

  274. Ciriello R, Cataldi T, Centonze D, and Guerrieri A (2000) Permselective behavior of an electrosynthesized, nonconducting thin film of poly(2-naphthol) and its application to enzyme immobilization. Electroanalysis. 12:825–830.

    Article  Google Scholar 

  275. Vielstich W, Lamm A, and Gasteiger H (2003) Handbook of Fuel Cells: Fundamentals, Technology, Applications. John Wiley & Sons, Ltd. Chichester.

    Google Scholar 

  276. Tamaki T and Yamaguchi T (2006) High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Ind. Eng. Chem. Res. 45:3050–3058.

    Article  Google Scholar 

  277. Arechederra RL, Treu BL, and Minteer SD (2007) Development of glycerol/O2 biofuel cell. J. Power Sources. 173:156–161.

    Article  Google Scholar 

  278. Brunel L, Denele J, Servat K et al. (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9:331–336.

    Article  Google Scholar 

  279. Lim KG and Palmore GTR (2007) Microfluidic biofuel cells: The influence of electrode diffusion layer on performance. Biosens. Bioelectron. 22:941–947.

    Article  Google Scholar 

  280. Report on Basic Research Needs to Assure a Secure Energy Future (2003) U. S. Department of Energy. Available from http://www.science.doe.gov/bes/reports/list.html.

  281. Thomas EV, Bloom I, Christophersen JP, and Battaglia VS (2008) Statistical methodology for predicting the life of lithium-ion cells via accelerated degradation testing. J. Power Sources. 184:312–317.

    Article  Google Scholar 

  282. Sakaue E (2005) Micromachining/nanotechnology in direct methanol fuel cell. Digest IEEE Conference on MEMS: Miami Beach, FL, Jan 30–Feb 3 1:600–605.

    Google Scholar 

  283. Jankowski AF, Hayes JP, Graff RT, and Morse JD (2002) Micro-fabricated thin film fuel cells for portable power requirements. Materials Research Society Proceedings. San Francisco, CA, April 1–5 730:93–98.

    Google Scholar 

  284. Hayase M, Kawase T, and Hatsuzawa T (2004) Miniature 250 μm thick fuel cell with monolithically fabricated silicon eletrodes. Electrochem. Solid-State Lett. 7:A231–A234.

    Article  Google Scholar 

  285. Modroukas D, Modi V, and Frechette LG (2005) Micromachined silicon structures for free-convection PEM fuel cells. J. Micromech. Microeng. 15:S193–S201.

    Article  Google Scholar 

  286. Min KB, Tanaka S, and Esashi M (2002) MEMS-based polymer electrolyte fuel cell. Electrochemistry 70:924–927.

    Google Scholar 

  287. Kravitz SH, Apblett CA, Schmidt CF, Beggans MH, and Hecht AM (2002) A silicon micro fuel cell with a porous silicon nitride membrane electrode assembly. Abstracts of the Electrochemical Society Meeting: Salt Lake City, UT, October 20–25 1:708.

    Google Scholar 

  288. Kelley SC, Deluga GA, and Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 3:407–409.

    Article  Google Scholar 

  289. Lee SJ, Chang-Chien A, Cha SW et al. (2002) Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources. 112:410–418.

    Article  Google Scholar 

  290. Motokawa S, Mohamedi M, Momma T, Shoji S, and Osaka T (2004) MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (u-DMFC). Electrochem. Commun. 6:562–565.

    Article  Google Scholar 

  291. D'Arrigo G, Spinella C, Arena G, and Lorenti S (2003) Fabrication of miniaturized Si-based electrocatalytic membranes. Mater. Sci. Eng. C. 23:13–18.

    Article  Google Scholar 

  292. Erdler G, Frank M, Lehmann M, Reinecke H, and Muller C (2006) Chip integrated fuel cell. Sensor Actuat. A-Phys. 132:331–336.

    Article  Google Scholar 

  293. Meyers JP and Maynard HL (2002) Design considerations for miniaturized PEM fuel cells. J. Power Sources 109:76–88.

    Article  Google Scholar 

  294. Kuriyama N, Kubota T, Okamura D, Suzuki T, and Sasahara J (2008) Design and fabrication of MEMS-based monolithic fuel cells. Sensor Actuat. A-Phys. 145–146:354–362.

    Article  Google Scholar 

  295. Dyer CK (2002) Fuel cells for portable applications. J. Power Sources 106:31–34.

    Article  Google Scholar 

  296. Park BY and Madou MJ (2006) Design, fabricaion, and initial testing of a miniature PEM fuel cell with micro-scale pyrolyzed carbon fluidic plates. J. Power Sources 162:369–379.

    Article  Google Scholar 

  297. Gottesfeld S and Wilson MS (2000) Polymer electrolyte fuel cells as potential power sources for portable electronic devices. In: Osaka T and Datta M (eds) Energy Storage Systems for Electronics Devices, Gordon and Breach Science Publishers, Singapore.

    Google Scholar 

  298. Arico AS, Srinivasan S, and Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161.

    Article  Google Scholar 

  299. Müller J, Frank G, Colbow K, and Wilkinson D (2003) Transport/kinetic limitations and efficiency losses. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.

    Google Scholar 

  300. Neergat M, Friedrich KA, and Stimming U (2003) New material for DMFC MEAs. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.

    Google Scholar 

  301. Narayanan SR, Valdez TI, and Rohatgi N (2003) DMFC system design for portable applications. In: Vielstich W, Gasteiger HA, and Lamm A (eds) Handbook of Fuel Cells, John Wiley and Sons Ltd., England.

    Google Scholar 

  302. Lu G and Wang CY (2004) Two-phase microfluidics, heat and mass transport in direct methanol fuel cells. In: Sunden B and Faghri M (eds) Transport Phenomena in Fuel Cells, WIT Press, Boston, MA.

    Google Scholar 

  303. Gottesfeld S (2007) Polymer electrolyte and direct methanol fuel cells. In: Bard AJ and Stratman M (eds) Encyclopedia of Electrochemistry, John Wiley and Sons Ltd., Weinheim.

    Google Scholar 

  304. Shaffer CE and Wang CY (2009) Performance modeling and cell design for high concentration methanol fuel cells. In: Vielstich W, Yokokawa H, and Gasteiger HA (eds) Advances in Electrocatalysis, Materials, Diagnostics and Durability, John Wiley and Sons Ltd., England.

    Google Scholar 

  305. Choban ER, Markoski LJ, Wieckowski A, and Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J. Power Sources. 128:54–60.

    Article  Google Scholar 

  306. Kjeang E, McKechnie J, Sinton D, and Djilali N (2007) Planar and three-dimensional microfluidic fuel cell architectures based on graphite rod electrodes. J. Power Sources. 168:379–390.

    Article  Google Scholar 

  307. Kjeang E, Djilali N, and Sinton D (2009) Microfluidic fuel cells: A review. J. Power Sources. 186:353–369.

    Article  Google Scholar 

  308. Li A, Chan SH, and Nguyen NT (2007) A laser-micromachined polymeric membraneless fuel cell. J. Micromech. Microeng. 17:1107–1113.

    Article  Google Scholar 

  309. Litster S and Djilali N (2008) Theoretical performance analysis of microstructured air-breathing fuel cells. Electrochem. Solid-State Lett. 11:B1–B5.

    Article  Google Scholar 

  310. Jiang Y, Wang X, Zhong L, and Liu L (2006) Design, fabrication and testing of a silicon-based air-breathing micro direct methanol fuel cell. J. Micromech. Microeng. 16:S233–S239.

    Article  Google Scholar 

  311. Cao J, Zou Z, Huang Q et al. (2008) Planar air-breathing micro-direct methanol fuel cell stacks based on micro-electronic-mechanical-system technology. J. Power Sources. 185:433–438.

    Article  Google Scholar 

  312. Chiao M, Lam K, and Lin L (2006) Micromachined microbial and photosynthethic fuel cells. J. Micromech. Microeng. 16:2547–2553.

    Article  Google Scholar 

  313. Barton SC, Gallaway J, and Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104:4867–4886.

    Article  Google Scholar 

  314. Kerzenmacher S, Ducree J, Zengerle R, and von Stetten F (2008) Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources. 182:1–17.

    Article  Google Scholar 

  315. Moriuchi T, Morishima K, and Furukawa Y (2008) Improved power capability with pyrolyzed carbon electrodes in micro direct photosynthetic/metabolic bio-fuel cell. Int. J. Precision Eng. Manuf. 9:23–27.

    Google Scholar 

  316. Topcagic S and Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta. 51:2168–2172.

    Article  Google Scholar 

  317. O’Hayre R, Braithwaite D, Hermann W et al. (2003) Development of portable fuel cell arrays with printed-circuit technology. J. Power Sources. 124:459–472.

    Article  Google Scholar 

  318. More KL and Reeves KS (2005) Microstructural characterization of PEM fuel cell MEAs. DOE Hydrogen Program Annual Merit Review Proceedings: Arlington, VA, May 23–26 1.

    Google Scholar 

  319. Gottesfeld S and Zawodzinski TA (1997) Polymer electrolyte fuel cells. In: Tobias C (ed) Advances in Electrochemical Science and Engineering, Wiley and Sons, New York.

    Google Scholar 

  320. Eikerling M, Kornyshev AA, and Kulikovsky AA (2007) Physical modeling of cell components, cells and stacks. In: Macdonald DD and Schmuki P (eds) Encyclopedia of Electrochemistry, VCH-Wiley, Weinheim.

    Google Scholar 

  321. Eikerling M, Kornyshev AA, and Kulikovsky AA (2006) Water in polymer electrolyte fuel cells: Friend or foe? Phys. Today. 59:38–44.

    Article  Google Scholar 

  322. Debe MK (2003) Novel catalysts, calatyst support and catalysts coated membrane methods. In: Vielstich W, Lamm A, and Gasteiger HA (eds) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., England.

    Google Scholar 

  323. Debe MK, Schmoeckel AK, Vernstrom GD, and Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J. Power Sources. 161:1002–1011.

    Article  Google Scholar 

  324. Mukherjee PP, Sinha PK, and Wang CY (2007) Impact of gas diffusion layer structure and wettability on water management in polymer electrolyte fuel cells. J. Mater. Chem. 17:3053–3089.

    Article  Google Scholar 

  325. Mathias MF, Roth J, Fleming J, and Lehnert W (2003) Diffusion media materials and characterization. In: Lietsich W, Lamm A, and Gasteiger HA (eds) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., Chicester.

    Google Scholar 

  326. Weber AZ and Darling RM (2007) Understanding porous water transport plates in polymer-electrolyte fuel cells. J. Power Sources. 168:191–199.

    Article  Google Scholar 

  327. Wang CY (2004) Fundamental models for fuel cell engineering. Chem. Rev. 104:4727–4766.

    Article  Google Scholar 

  328. Wang CY (2003) Two-phase flow and transport. In: Anonymous (ed) Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley and Sons Ltd., Chicester.

    Google Scholar 

  329. Lin P, Park BY, and Madou MJ (2008) Development and characterization of a miniature PEM fuel cell stack with carbon bipolar plates. J. Power Sources. 176:207–214.

    Article  Google Scholar 

  330. Mukherjee PP (2007) Pore-Scale Modeling and Analysis of the Polymer Electrolyte Fuel Cell Catalyst Layer. PhD Dissertation, The Pennsylvania State University.

    Google Scholar 

  331. Mukherjee PP and Wang CY (2008) A Catalyst layer Flooding Model for Polymer Electrolyte Fuel Cells. Proceedings of ASME Fuel Cell 2008: Denver, CO, June 16–18 1.

    Google Scholar 

  332. Prasher RS, Hu XJ, Chalopin Y et al. (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102:105901–105904.

    Article  Google Scholar 

  333. Lee SW, Kim B, Chen S, Shao-Horn Y, and Hammond PT (2009) Layer-by-Layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J. Am. Chem. Soc. 131:671–679.

    Article  Google Scholar 

  334. Mano N, Mao F, and Heller A (2003) Characteristics of a miniature compartment-less Glucose–O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc. 125:6588–6594.

    Article  Google Scholar 

  335. Klotzbach T, Watt M, Ansari Y, and Minteer SD (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J. Membr. Sci. 282:276–283.

    Article  Google Scholar 

  336. Barton SC, Sun Y, Chandra B, White S, and Hone J (2007) Mediated enzyme electrodes with combined micro- and nanoscale supports. Electrochem. Solid-State Lett. 10:B96–B100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Martinez-Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martinez-Duarte, R., Teixidor, G.T., Mukherjee, P.P., Kang, Q., Madou, M.J. (2010). Perspectives of Micro and Nanofabrication of Carbon for Electrochemical and Microfluidic Applications. In: Chakraborty, S. (eds) Microfluidics and Microfabrication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1543-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1543-6_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1542-9

  • Online ISBN: 978-1-4419-1543-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics