Skip to main content

Signaling and Phloem-Mobile Transcripts

  • Chapter
  • First Online:
Book cover Short and Long Distance Signaling

Part of the book series: Advances in Plant Biology ((AIPB,volume 3))

Abstract

Numerous studies revealed that beside viral RNAs also plant endogenous RNAs are transported from source tissue towards apical tissues in plants. Surprisingly a high number of distinct transcripts including protein coding and non-coding RNAs were shown to allocate from cell to cell and via the phloem to distant organs. These mobile RNA molecules seem to carry specific structural features allowing them to enter the phloem tissue and to hitchhike on the phloem stream delivering assimilates from mature leaves to apical tissues. Highlighting the signaling role of phloem-allocated RNAs a number of messenger RNAs and micro RNAs have been shown to act as systemic signals altering the shape of growing tissues or to facilitate adaptation to nutritional stresses. The systemic nature of RNAs challenges our classical view on how signaling systems could function. RNA mobility increases the level of complexity and, most importantly, the specificity of a systemic signaling system coordinating growth between cells and organs. In this chapter we discuss the identity and potential function of phloem-allocated RNA molecules, the factors facilitating RNA transport, and the potential role of RNA binding proteins present in the phloem stream.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S (2008) Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol 49:767–790

    PubMed  CAS  Google Scholar 

  • Aniento F, Robinson DG (2005) Testing for endocytosis in plants. Protoplasma 226:3–11

    PubMed  CAS  Google Scholar 

  • Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    PubMed  CAS  Google Scholar 

  • Aoki K, Suzui N, Fujimaki S, Dohmae N, Yonekura-Sakakibara K, Fujiwara T, Hayashi H, Yamaya T, Sakakibara H (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814

    PubMed  CAS  Google Scholar 

  • Asano T, Masumura T, Kusano H, Kikuchi S, Kurita A, Shimada H, Kadowaki K (2002) Construction of a specialized cDNA library from plant cells isolated by laser capture microdissection: toward comprehensive analysis of the genes expressed in the rice phloem. Plant J 32: 401–408

    PubMed  CAS  Google Scholar 

  • Atkins CA, Smith PM, Rodriguez-Medina C (2011) Macromolecules in phloem exudates – a review. Protoplasma 248:165–172

    PubMed  CAS  Google Scholar 

  • Attaran E, Zeier TE, Griebel T, Zeier J (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954–971

    PubMed  CAS  Google Scholar 

  • Banerjee AK, Chatterjee M, Yu Y, Suh SG, Miller WA, Hannapel DJ (2006) Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. Plant Cell 18:3443–3457

    PubMed  CAS  Google Scholar 

  • Banerjee AK, Lin T, Hannapel DJ (2009) Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol 151:1831–1843

    PubMed  CAS  Google Scholar 

  • Barnes A, Bale J, Constantinidou C, Ashton P, Jones A, Pritchard J (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481

    PubMed  CAS  Google Scholar 

  • Barton DA, Cole L, Collings DA, Liu DY, Smith PM, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817

    PubMed  CAS  Google Scholar 

  • Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci USA 106:3615–3620

    PubMed  CAS  Google Scholar 

  • Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, Tikoo A, Chauhan A (2011) Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 155:1–9

    PubMed  CAS  Google Scholar 

  • Blackman LM, Boevink P, Cruz SS, Palukaitis P, Oparka KJ (1998) The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525–537

    PubMed  CAS  Google Scholar 

  • Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci USA 107:16384–16389

    PubMed  CAS  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    PubMed  CAS  Google Scholar 

  • Cevec M, Thibaudeau C, Plavec J (2010) NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans. Nucleic Acids Res 38:7814–7821

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Banerjee AK, Hannapel DJ (2007) A BELL1-like gene of potato is light activated and wound inducible. Plant Physiol 145:1435–1443

    PubMed  CAS  Google Scholar 

  • Chen H, Rosin FM, Prat S, Hannapel DJ (2003a) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132:1391–1404

    PubMed  CAS  Google Scholar 

  • Chen IH, Meng M, Hsu YH, Tsai CH (2003b) Functional analysis of the cloverleaf-like structure in the 3′ untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement. Virology 315:415–424

    PubMed  CAS  Google Scholar 

  • Chen H, Banerjee AK, Hannapel DJ (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284

    PubMed  CAS  Google Scholar 

  • Chisholm ST, Parra MA, Anderberg RJ, Carrington JC (2001) Arabidopsis RTM1 and RTM2 genes function in phloem to restrict long-distance movement of tobacco etch virus. Plant Physiol 127:1667–1675

    PubMed  CAS  Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannenhoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein 1 (PP1), from Cucurbita maxima. Plant J 12:49–61

    PubMed  CAS  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    PubMed  CAS  Google Scholar 

  • Cosson P, Sofer L, Le QH, Leger V, Schurdi-Levraud V, Whitham SA, Yamamoto ML, Gopalan S, Le Gall O, Candresse T, Carrington JC, Revers F (2010) RTM3, which controls long-distance movement of potyviruses, is a member of a new plant gene family encoding a meprin and TRAF homology domain-containing protein. Plant Physiol 154:222–232

    PubMed  CAS  Google Scholar 

  • Crafts AS (1932) Phloem anatomy, exudation, and transport of organic nutrients in Cucurbits. Plant Physiol 7:i4–i225

    PubMed  CAS  Google Scholar 

  • Diaz-Pendon JA, Ding SW (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326

    PubMed  CAS  Google Scholar 

  • Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    PubMed  CAS  Google Scholar 

  • Ding B (2009) The biology of viroid-host interactions. Annu Rev Phytopathol 47:105–131

    PubMed  CAS  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    PubMed  CAS  Google Scholar 

  • Dreher TW (2009) Role of tRNA-like structures in controlling plant virus replication. Virus Res 139:217–229

    PubMed  CAS  Google Scholar 

  • Dreher TW, Goodwin JB (1998) Transfer RNA mimicry among tymoviral genomic RNAs ranges from highly efficient to vestigial. Nucleic Acids Res 26:4356–4364

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    PubMed  CAS  Google Scholar 

  • Fisher DB, Wu Y, Ku MS (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    PubMed  CAS  Google Scholar 

  • Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–288

    PubMed  CAS  Google Scholar 

  • Gaupels F, Buhtz A, Knauer T, Deshmukh S, Waller F, van Bel AJ, Kogel KH, Kehr J (2008) Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. J Exp Bot 59:3297–3306

    PubMed  CAS  Google Scholar 

  • Genoves A, Pallas V, Navarro JA (2011) Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic and viral cell-to-cell movement. J Virol 85(15):7797–7809

    PubMed  CAS  Google Scholar 

  • Gerdes HH, Bukoreshtliev NV, Barroso JF (2007) Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 581:2194–2201

    PubMed  CAS  Google Scholar 

  • Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J (2006) Towards the proteome of Brassica napus phloem sap. Proteomics 6:896–909

    PubMed  CAS  Google Scholar 

  • Gilbertson RL, Lucas WJ (1996) How do viruses traffic on the vascular highway. Trends Plant Sci 1:260–268

    Google Scholar 

  • Gisel A, Barella S, Hempel FD, Zambryski PC (1999) Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126:1879–1889

    PubMed  CAS  Google Scholar 

  • Gisel A, Hempel FD, Barella S, Zambryski P (2002) Leaf-to-shoot apex movement of symplastic tracer is restricted coincident with flowering in Arabidopsis. Proc Natl Acad Sci USA 99: 1713–1717

    PubMed  CAS  Google Scholar 

  • Gomez G, Pallas V (2004) A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol 78: 10104–10110

    PubMed  CAS  Google Scholar 

  • Gomez G, Torres H, Pallas V (2005) Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. Plant J 41:107–116

    PubMed  CAS  Google Scholar 

  • Gopinath K, Kao CC (2007) Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. Plant Cell 19:1179–1191

    PubMed  CAS  Google Scholar 

  • Griffing LR, Villanueva MA, Taylor J, Moon S (1995) Methods in cell biology. Academic, San Diego, pp 109–121

    Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21:335–345

    PubMed  CAS  Google Scholar 

  • Ham BK, Brandom JL, Xoconostle-Cazares B, Ringgold V, Lough TJ, Lucas WJ (2009) A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21(1):197–215

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in postranscriptional gene silencing in plants. Science 286:950–951

    PubMed  CAS  Google Scholar 

  • Harries P, Ding B (2011) Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology 411:237–243

    PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14(Suppl):S303–S325

    PubMed  CAS  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42:49–68

    PubMed  CAS  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    PubMed  Google Scholar 

  • Huang NC, Yu TS (2009) The sequences of Arabidopsis GA-INSENSITIVE RNA constitute the motifs that are necessary and sufficient for RNA long-distance trafficking. Plant J 59(6): 921–929

    PubMed  CAS  Google Scholar 

  • Imlau A, Truernit E, Sauer N (1999) Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues. Plant Cell 11:309–322

    PubMed  CAS  Google Scholar 

  • Ivashikina N, Deeken R, Ache P, Kranz E, Pommerrenig B, Sauer N, Hedrich R (2003) Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Plant J 36:931–945

    PubMed  CAS  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    PubMed  CAS  Google Scholar 

  • Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T (2011) Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 413:205–215

    PubMed  CAS  Google Scholar 

  • Kanehira A, Yamada K, Iwaya T, Tuswamoto R, Kasai A, Nakazono M, Harada T (2010) Apple phloem cells contain some mRNAs transported over long distances. Tree Genet Genomes 6:635–642

    Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    PubMed  CAS  Google Scholar 

  • Kehr J, Rep M (2007) Protein extraction from xylem and phloem sap. Methods Mol Biol 355: 27–35

    PubMed  CAS  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    PubMed  CAS  Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    PubMed  CAS  Google Scholar 

  • Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007a) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA 104:11115–11120

    PubMed  CAS  Google Scholar 

  • Kim SH, Ryabov EV, Kalinina NO, Rakitina DV, Gillespie T, MacFarlane S, Haupt S, Brown JW, Taliansky M (2007b) Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J 26:2169–2179

    PubMed  CAS  Google Scholar 

  • Kragler F (2010) RNA in the phloem: a crisis or a return on investment? Plant Sci 178:99–104

    CAS  Google Scholar 

  • Kragler F, Lucas WJ, Monzer J (1998) Plasmodesmata: dynamics, domains and patterning. Ann Bot (London) 81:1–10

    Google Scholar 

  • Lee JY, Yoo BC, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    PubMed  CAS  Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    PubMed  CAS  Google Scholar 

  • Li C, Zhang K, Zeng X, Jackson S, Zhou Y, Hong Y (2009) A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol 83:3540–3548

    PubMed  CAS  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403

    PubMed  CAS  Google Scholar 

  • Lin JW, Ding MP, Hsu YH, Tsai CH (2007a) Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res 35:424–432

    PubMed  CAS  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007b) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488–1506

    PubMed  CAS  Google Scholar 

  • Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ (2009) Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 8:343–356

    PubMed  CAS  Google Scholar 

  • Lough TJ, Lucas WJ (2006) Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    PubMed  CAS  Google Scholar 

  • Lough TJ, Lee RH, Emerson SJ, Forster RL, Lucas WJ (2006) Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455–465

    PubMed  CAS  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Ding B, Van Der Schoot C (1993) Tansley review No. 58: plasmodesmata and the supracellular nature of plants. New Phytol 125:435–476

    Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    PubMed  CAS  Google Scholar 

  • Malter D, Wolf S (2011) Melon phloem-sap proteome: developmental control and response to viral infection. Protoplasma 248:217–224

    PubMed  CAS  Google Scholar 

  • Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-Lopez P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873–2881

    PubMed  CAS  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    PubMed  CAS  Google Scholar 

  • Miller WA, Wang Z, Treder K (2007) The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochem Soc Trans 35:1629–1633

    PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    PubMed  CAS  Google Scholar 

  • Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248:75–99

    PubMed  CAS  Google Scholar 

  • Noll GA, Fontanellaz ME, Ruping B, Ashoub A, van Bel AJ, Fischer R, Knoblauch M, Prufer D (2007) Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol 65:285–294

    PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    PubMed  CAS  Google Scholar 

  • Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S (2007) Characterization of phloem-sap transcription profile in melon plants. J Exp Bot 58:3645–3656

    PubMed  CAS  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts IM, Kotlizky G, Sauer N, Epel B (1999a) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999b) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves [see comments]. Cell 97:743–754

    PubMed  CAS  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    PubMed  CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    PubMed  CAS  Google Scholar 

  • Qi Y, Pelissier T, Itaya A, Hunt E, Wassenegger M, Ding B (2004) Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–1752

    PubMed  CAS  Google Scholar 

  • Rajamaki ML, Valkonen JP (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell 21:2485–2502

    PubMed  CAS  Google Scholar 

  • Requena A, Simon-Buela L, Salcedo G, Garcia-Arenal F (2006) Potential involvement of a cucumber homolog of phloem protein 1 in the long-distance movement of cucumber mosaic virus particles. Mol Plant Microbe Interact 19:734–746

    PubMed  CAS  Google Scholar 

  • Rinne PL, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  • Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    PubMed  CAS  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed  CAS  Google Scholar 

  • Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PM (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L). BMC Plant Biol 11:36

    PubMed  CAS  Google Scholar 

  • Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126: 4405–4419

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (2001) The phloem as a conduit for inter-organ communication. Curr Opin Plant Biol 4:202–209

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Hinojosa-Moya JJ, Xoconostle-Cázares B, Lucas WJ (2007) Influence of cucumber mosaic virus infection on the mRNA population present in the phloem translocation stream of pumpkin plants. Funct Plant Biol 34:292–301

    CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    PubMed  CAS  Google Scholar 

  • Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088

    PubMed  CAS  Google Scholar 

  • Saxton MJ, Breidenbach RW (1988) Receptor-mediated endocytosis in plants is energetically possible. Plant Physiol 86:993–995

    PubMed  CAS  Google Scholar 

  • Shin HI, Cho NJ, Cho TJ (2008) Role of 5′-UTR hairpins of the Turnip yellow mosaic virus RNA in replication and systemic movement. BMB Rep 41:778–783

    PubMed  CAS  Google Scholar 

  • Simon-Buela L, Garcia-Arenal F (1999) Virus particles of cucumber green mottle mosaic tobamovirus move systemically in the phloem of infected cucumber plants. Mol Plant Microbe Interact 12:112–118

    PubMed  CAS  Google Scholar 

  • Streitner C, Danisman S, Wehrle F, Schoning JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. Plant J 56:239–250

    PubMed  CAS  Google Scholar 

  • Sudarshana MR, Wang HL, Lucas WJ, Gilbertson RL (1998) Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol Plant Microbe Interact 11:277–291

    CAS  Google Scholar 

  • Takeda R, Petrov AI, Leontis NB, Ding B (2011) A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana. Plant Cell 23:258–272

    PubMed  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    PubMed  CAS  Google Scholar 

  • Tangl E (1880) Ueber offene Communicationen zwischen den Zellen des Endosperms einiger Samen. Jahrbücher für Wissenschaftliche Botanik 12:170–190

    Google Scholar 

  • Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60

    PubMed  CAS  Google Scholar 

  • Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    PubMed  CAS  Google Scholar 

  • Ueki S, Citovsky V (2005) Control improves with age: intercellular transport in plant embryos and adults. Proc Natl Acad Sci USA 102:1817–1818

    PubMed  CAS  Google Scholar 

  • Vilaine F, Palauqui JC, Amselem J, Kusiak C, Lemoine R, Dinant S (2003) Towards deciphering phloem: a transcriptome analysis of the phloem of Apium graveolens. Plant J 36:67–81

    PubMed  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008a) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    PubMed  CAS  Google Scholar 

  • Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008b) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    PubMed  CAS  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    PubMed  CAS  Google Scholar 

  • Weinl C, Marquardt S, Kuijt SJ, Nowack MK, Jakoby MJ, Hulskamp M, Schnittger A (2005) Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17:1704–1722

    PubMed  CAS  Google Scholar 

  • Whitham SA, Anderberg RJ, Chisholm ST, Carrington JC (2000) Arabidopsis RTM2 gene is necessary for specific restriction of tobacco etch virus and encodes an unusual small heat shock-like protein. Plant Cell 12:569–582

    PubMed  CAS  Google Scholar 

  • Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC, McFarland KC, Franceschi VR, Lucas WJ (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    PubMed  CAS  Google Scholar 

  • Xu XM, Jackson D (2010) Lights at the end of the tunnel: new views of plasmodesmal structure and function. Curr Opin Plant Biol 13:684–692

    PubMed  CAS  Google Scholar 

  • Yoo B-C, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee Y-M, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    PubMed  CAS  Google Scholar 

  • Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    PubMed  CAS  Google Scholar 

  • Zhang S, Sun L, Kragler F (2009) The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol 150:378–387

    PubMed  CAS  Google Scholar 

  • Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci USA 107:13532–13537

    PubMed  CAS  Google Scholar 

  • Zhong X, Tao X, Stombaugh J, Leontis N, Ding B (2007) Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. EMBO J 26:3836–3846

    PubMed  CAS  Google Scholar 

  • Zhong X, Archual AJ, Amin AA, Ding B (2008) A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47

    PubMed  CAS  Google Scholar 

  • Zhu Y, Green L, Woo YM, Owens R, Ding B (2001) Cellular basis of potato spindle tuber viroid systemic movement. Virology 279:69–77

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment(s)

Work in the lab of R.R.-M. was supported by funds from CONACyT (Grant No. 50769) and UC-MEXUS; FK was supported by the Project P 19682-B03 from the Austrian Science Funds (FWF). Research in the lab of S.W. was supported by the Israel Science Foundation (ISF grant number 386/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Kragler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ruiz-Medrano, R., Kragler, F., Wolf, S. (2012). Signaling and Phloem-Mobile Transcripts. In: Kragler, F., Hülskamp, M. (eds) Short and Long Distance Signaling. Advances in Plant Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1532-0_7

Download citation

Publish with us

Policies and ethics