Skip to main content

The Gene Transfer Agent of Rhodobacter capsulatus

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 675))

Abstract

When Rhodobacter capsulatus cultures enter the stationary phase of growth, particles of the gene transfer agent (RcGTA) are released from cells. The morphology of RcGTA resembles that of a small, tailed bacteriophage, with a protein capsid surrounding a ~4 kb linear, double-stranded fragment of DNA. However, the DNA present consists of random segments of the R. capsulatus genome, which may be transferred to another strain of R. capsulatus. The recipient in RcGTA-mediated gene transduction may acquire new alleles and thus express a new phenotype. The genes encoding the structural proteins of the RcGTA are clustered on the R. capsulatus chromosome, whereas genes that encode proteins that regulate the production of RcGTA are scattered around the chromosome. These regulatory proteins include a homoserine lactone synthase (GtaI) that produces a quorum-sensing signal, a two-component sensor-kinase protein (CckA), and a two-component response regulator protein (CtrA). We review the proposed evolutionary origin of RcGTA, as well as environmental and cellular factors involved in the induction of this unusual process of genetic exchange.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnett MJ, Hung DY, Reisenauer A et al (2001) A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J Bacteriol 183:3204–3210

    Article  PubMed  CAS  Google Scholar 

  • Beatty JT, Gest H (1981) Generation of succinyl-coenzyme A in photosynthetic bacteria. Arch Microbiol 129:335–340

    Article  CAS  Google Scholar 

  • Bellefontaine AF, Pierreux CE, Mertens P et al (2002) Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 43:945–960

    Article  PubMed  CAS  Google Scholar 

  • Biers EJ, Wang K, Pennington C et al (2008) Occurrence and expression of gene transfer agent genes in marine bacterioplankton. Appl Environ Microbiol 74:2933–2939

    Article  PubMed  CAS  Google Scholar 

  • Bowers LM, Shapland EB, Ryan KR (2008) Who’s in charge here? Regulating cell cycle regulators. Curr Opin Microbiol 11:547–552

    Article  PubMed  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Cheetham BF, Katz ME (1995) A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Spano A, Goodman BE et al (2009) Proteomic analysis and identification of the structural and regulatory proteins of the Rhodobacter capsulatus gene transfer agent. J Proteome Res 8:967–973

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  PubMed  CAS  Google Scholar 

  • Domian IJ, Reisenauer A, Shapiro L (1999) Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci USA 43:6648–6653

    Article  Google Scholar 

  • Eiserling F, Pushkin A, Gingery M et al (1999) Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J Gen Virol 80:3305–3308

    PubMed  CAS  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    Article  PubMed  CAS  Google Scholar 

  • Humphrey SB, Stanton TB, Jensen NS et al (1997) Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J Bacteriol 179:323–329

    PubMed  CAS  Google Scholar 

  • Lang AS, Beatty JT (2000) Genetic analysis of a bacterial genetic exchange element: The gene transfer agent of Rhodobacter capsulatus. Proc Natl Acad Sci USA 97:859–864

    Article  PubMed  CAS  Google Scholar 

  • Lang AS, Beatty JT (2001) The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch Microbiol 175:241–249

    Article  PubMed  CAS  Google Scholar 

  • Lang AS, Beatty JT (2002) A bacterial signal transduction system controls genetic exchange and motility. J Bacteriol 184:913–918

    Article  PubMed  CAS  Google Scholar 

  • Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in α-proteobacteria. Trends Microbiol 15:54–62

    Article  PubMed  CAS  Google Scholar 

  • Lang AS, Taylor TA, Beatty JT (2002) Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J Mol Evol 55:534–543

    Article  PubMed  CAS  Google Scholar 

  • Laub MT, Chen SL, Shapiro L et al (2002) Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci USA 99:4632–4637

    Article  PubMed  CAS  Google Scholar 

  • Laub MT, McAdams HH, Feldblyum T et al (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148

    Article  PubMed  CAS  Google Scholar 

  • Marrs BL (1974) Genetic recombination in R. capsulata. Proc Natl Acad Sci USA 71:971–973

    Article  PubMed  CAS  Google Scholar 

  • Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589

    Article  PubMed  CAS  Google Scholar 

  • Piper KR, Beck von Bodman S, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450

    Article  PubMed  CAS  Google Scholar 

  • Quon KC, Marczynski GT, Shapiro L (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93

    Article  PubMed  CAS  Google Scholar 

  • Rapp BJ, Wall JD (1987) Genetic transfer in Desulfovibrio desulfuricans. Proc Natl Acad Sci USA 84:9128–9130

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer A, Quon K, Shapiro L (1999) The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J Bacteriol 181:2430–2439

    PubMed  CAS  Google Scholar 

  • Schaefer AL, Taylor TA, Beatty JT et al (2002) Long-chain acyl-homoserine lactone quorum sensing regulation of Rhodobacter capsulatus gene transfer agent production. J Bacteriol 184:6515–6521

    Article  PubMed  CAS  Google Scholar 

  • Solioz M, Yen H-C, Marrs BL (1975) Release and uptake of gene transfer agent by Rhodopseudomonas capsulata. J Bacteriol 123:651–657

    PubMed  CAS  Google Scholar 

  • Suttle C (2005) Viruses in the sea. Nature 437:356–361

    Article  PubMed  CAS  Google Scholar 

  • van Passel M, Thygesen H, Luyf A et al (2005) An acquisition account of genomic islands based on genome signature comparisons. BMC Genomics 6:163–173

    Article  PubMed  Google Scholar 

  • von Bodman SB, Ball JK, Faini MA et al (2003) The quorum sensing negative regulators EsaR and ExpR (Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription. J Bacteriol 185:7001–7007

    Article  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Welch M, Todd DE, Whitehead NA et al (2000) N-.Aacyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J 19:631–641

    Article  PubMed  CAS  Google Scholar 

  • Yen HC, Hu NT, Marrs BL (1979) Characterization of the gene transfer agent made by an overproducer mutant of Rhodopseudomonas capsulata. J Mol Biol 131:157–168

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Thomas Beatty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Leung, M.M., Florizone, S.M., Taylor, T.A., Lang, A.S., Beatty, J.T. (2010). The Gene Transfer Agent of Rhodobacter capsulatus . In: Hallenbeck, P. (eds) Recent Advances in Phototrophic Prokaryotes. Advances in Experimental Medicine and Biology, vol 675. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1528-3_14

Download citation

Publish with us

Policies and ethics