Skip to main content

Nitric Oxide Is a Promising Enhancer for Cancer Therapy

  • Chapter
  • First Online:
  • 1062 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

This report summarizes the present state of our knowledge pertaining to the nitric oxide (NO)-induced sensitization of tumor cell death. The effects of NO and its synergy with ionizing radiations, with members of the TNF family, and with chemotherapy have been investigated. The effect of NO-induced sensitization and the underlying molecular mechanisms are discussed.

Financial Support: Our group is supported by grants from Nièvre, Haute-Marne, Saône et Loire and Côte d’Or committees of the Ligue Nationale Contre le Cancer and from the Conseil Régional de Bourgogne.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    TGF: tumor growth factor.

  2. 2.

    DEA/NO: diethylamine nitric oxide.

  3. 3.

    GSNO: S-nitrosoglutathione.

  4. 4.

    SPERNO: spermine-NONOate.

  5. 5.

    Human T98G or U87 and rat C6 cells.

  6. 6.

    HCT-116 cancer cells.

  7. 7.

    SNU-1040 cancer cells.

  8. 8.

    SIN-1: 3-morpholinosydnonimine.

  9. 9.

    SCCVII/Ha.

  10. 10.

    FSaII fibrosarcoma.

  11. 11.

    ATR: ATM and Rad3-related.

  12. 12.

    VEGF: vascular endothelial growth factor.

  13. 13.

    TNF: tumor necrosis factor.

  14. 14.

    TRAIL: tumor necrosis factor-related apoptosis-inducing ligand.

  15. 15.

    FasL: ligand of Fas (CD95/APO-1 receptor).

  16. 16.

    IFN: interferon.

  17. 17.

    CH11: agonist anti-Fas antibody.

  18. 18.

    GTN: glyceryl trinitrate.

  19. 19.

    IAP: inhibitor of apoptosis.

  20. 20.

    SNP: sodium nitroprusside.

  21. 21.

    Nitrosylcobalamin, prodrug relatively tumor-specific due to higher transcobalamin receptor expression in tumor cells compared with normal tissue [32] that releases NO inside the cell.

  22. 22.

    Cap cells: DU145, PC-3, CL-1 and LNCaP cell lines.

  23. 23.

    XIAP, X-linked inhibitor of apoptosis.

  24. 24.

    PAPANO: 3-(2-hydroxy-2-nitroso-1-propyl hydrazino)-1-propanamine.

  25. 25.

    B-CLL: B-cell chronic lymphocytic leukemia.

  26. 26.

    MDR: multidrug resistance, MDR proteins, the main extrusion pump for hydrophobic drugs.

  27. 27.

    Substrates of glutathione-S-transferase that catalyze the conjugation of xenobiotics with reduced glutathione.

References

  • Adams, D.J., Levesque, M.C., Weinberg, J.B., Smith, K.L., Flowers, J.L., Moore, J., Colvin, O.M., and Silber, R. (2001). Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes. Leukemia 15, 1852–1859.

    Article  PubMed  CAS  Google Scholar 

  • Azizzadeh, B., Yip, H.T., Blackwell, K.E., Horvath, S., Calcaterra, T.C., Buga, G.M., Ignarro, L.J., and Wang, M.B. (2001). Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. Laryngoscope 111, 1896–1900.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, J.A., Morrison, B.H., Grane, R.W., Jacobs, B.S., Dabney, S., Gamero, A.M., Carnevale, K.A., Smith, D.J., Drazba, J., Seetharam, B., and Lindner, D.J. (2002). Effects of interferon beta on transcobalamin II-receptor expression and antitumor activity of nitrosylcobalamin. J. Natl. Cancer Inst. 94, 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.M. (2000). Exploiting the hypoxic cancer cell: mechanisms and therapeutic strategies. Mol. Med. Today 6, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Chawla-Sarkar, M., Bauer, J.A., Lupica, J.A., Morrison, B.H., Tang, Z., Oates, R.K., Almasan, A., DiDonato, J.A., Borden, E.C., and Lindner, D.J. (2003). Suppression of NF-kappa B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. J. Biol. Chem. 278, 39461–39469.

    Article  PubMed  CAS  Google Scholar 

  • Chung, P., Cook, T., Liu, K., Vodovotz, Y., Zamora, R., Finkelstein, S., Billiar, T., and Blumberg, D. (2003). Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide 8, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Cook, J.A., Krishna, M.C., Pacelli, R., DeGraff, W., Liebmann, J., Mitchell, J.B., Russo, A., and Wink, D.A. (1997). Nitric oxide enhancement of melphalan-induced cytotoxicity. Br. J. Cancer 76, 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Cook, T., Wang, Z., Alber, S., Liu, K., Watkins, S.C., Vodovotz, Y., Billiar, T.R., and Blumberg, D. (2004). Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res. 64, 8015–8021.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, D.L. (1960). Effect of oxygen and nitric oxide on the radio-sensitivity of human cells in tissue culture. Nature 186, 780–782.

    Article  PubMed  CAS  Google Scholar 

  • Doublier, S., Riganti, C., Voena, C., Costamagna, C., Aldieri, E., Pescarmona, G., Ghigo, D., and Bosia, A. (2008). RhoA silencing reverts the resistance to doxorubicin in human colon cancer cells. Mol. Cancer Res. 6, 1607–1620.

    Article  PubMed  CAS  Google Scholar 

  • Evig, C.B., Kelley, E.E., Weydert, C.J., Chu, Y., Buettner, G.R., and Burns, C.P. (2004). Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts. Nitric Oxide 10, 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen, L.J., Sullivan, R., Maxwell, L.R., Macdonald-Goodfellow, S.K., Adams, M.A., Bennett, B.M., Siemens, D.R., and Graham, C.H. (2007). Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin. Cancer Res. 13, 2199–2206.

    Article  PubMed  CAS  Google Scholar 

  • Garban, H.J. and Bonavida, B. (1999). Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol. Oncol. 73, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Garban, H.J. and Bonavida, B. (2001). Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha -induced cytotoxicity. J. Biol. Chem. 276, 8918–8923.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, N., Lohm, S., Touzery, C., Chantome, A., Perette, B., Reveneau, S., Brunotte, F., Juillerat-Jeanneret, L., and Jeannin, J.F. (2004). Tumour-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs. Carcinogenesis 25, 1559–1565.

    Article  PubMed  CAS  Google Scholar 

  • Gray, L.H., Green, F.O., and Hawes, C.A. (1958). Effect of nitric oxide on the radiosensitivity of tumour cells. Nature 182, 952–953.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, R.J., Makepeace, C.M., Hur, W.J., and Song, C.W. (1996). Radiosensitization of hypoxic tumor cells in vitro by nitric oxide. Int. J. Radiat. Oncol. Biol. Phys. 36, 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Hongo, F., Garban, H., Huerta-Yepez, S., Vega, M., Jazirehi, A.R., Mizutani, Y., Miki, T., and Bonavida, B. (2005). Inhibition of the transcription factor Yin Yang 1 activity by S-nitrosation. Biochem. Biophys. Res. Commun. 336, 692–701.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Flanders, P. (1957). Effect of nitric oxide on the radiosensitivity of bacteria. Nature 180, 1191–1192.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Tatsumi, T., Pizzoferrato, E., Vujanovic, N., and Storkus, W.J. (2005). Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 65, 8461–8470.

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Yepez, S., Vega, M., Escoto-Chavez, S.E., Murdock, B., Sakai, T., Baritaki, S., and Bonavida, B. (2009). Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide 20, 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Huerta-Yepez, S., Vega, M., Jazirehi, A., Garban, H., Hongo, F., Cheng, G., and Bonavida, B. (2004). Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene 23, 4993–5003.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, M.Y., Verovski, V.N., Van den Berge, D.L., Monsaert, C., and Storme, G.A. (1999). Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation. Br. J. Cancer 79, 1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, B.F., Beghein, N., Aubry, M., Gregoire, V., and Gallez, B. (2003). Potentiation of radiation-induced regrowth delay by isosorbide dinitrate in FSaII murine tumors. Int. J. Cancer 103, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Kitagaki, J., Yang, Y., Saavedra, J.E., Colburn, N.H., Keefer, L.K., and Perantoni, A.O. (2009). Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53. Oncogene 28, 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Kurimoto, M., Endo, S., Hirashima, Y., Hamada, H., Ogiichi, T., and Takaku, A. (1999). Growth inhibition and radiosensitization of cultured glioma cells by nitric oxide generating agents. J. Neurooncol. 42, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Lagadec, P., Raynal, S., Lieubeau, B., Onier, N., Arnould, L., Saint-Giorgio, V., Lawrence, D.A., and Jeannin, J.F. (1999). Evidence for control of nitric oxide synthesis by intracellular transforming growth factor-beta1 in tumor cells. Implications for tumor development. Am. J. Pathol. 154, 1867–1876.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.J., Lee, K.H., Kim, H.R., Jessup, J.M., Seol, D.W., Kim, T.H., Billiar, T.R., and Song, Y.K. (2001). Sodium nitroprusside enhances TRAIL-induced apoptosis via a mitochondria-dependent pathway in human colorectal carcinoma CX-1 cells. Oncogene 20, 1476–1485.

    Article  PubMed  CAS  Google Scholar 

  • Lejeune, P., Lagadec, P., Onier, N., Pinard, D., Ohshima, H., and Jeannin, J.F. (1994). Nitric oxide involvement in tumor-induced immunosuppression. J. Immunol. 152, 5077–5083.

    PubMed  CAS  Google Scholar 

  • Liew, F.Y. and Cox, F.E. (1991). Nonspecific defence mechanism: the role of nitric oxide. Immunol. Today 12, A17–A21.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Li, C., Qu, W., Leslie, E., Bonifant, C.L., Buzard, G.S., Saavedra, J.E., Keefer, L.K., and Waalkes, M.P. (2004). Nitric oxide prodrugs and metallochemotherapeutics: JS-K and CB-3-100 enhance arsenic and cisplatin cytolethality by increasing cellular accumulation. Mol. Cancer Ther. 3, 709–714.

    PubMed  CAS  Google Scholar 

  • Marcu, L. and Olver, I. (2006). Tirapazamine: from bench to clinical trials. Curr. Clin. Pharmacol. 1, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J.B., Wink, D.A., DeGraff, W., Gamson, J., Keefer, L.K., and Krishna, M.C. (1993). Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res. 53, 5845–5848.

    PubMed  CAS  Google Scholar 

  • Moncada, S. and Bolanos, J.P. (2006). Nitric oxide, cell bioenergetics and neurodegeneration. J. Neurochem. 97, 1676–1689.

    Article  PubMed  CAS  Google Scholar 

  • Muir, C.P., Adams, M.A., and Graham, C.H. (2006). Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res. Treat. 96, 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M., Ferrige, A.G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Park, I.C., Woo, S.H., Park, M.J., Lee, H.C., Lee, S.J., Hong, Y.J., Lee, S.H., Hong, S.I., and Rhee, C.H. (2003). Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells. Oncol. Rep. 10, 629–633.

    PubMed  CAS  Google Scholar 

  • Perrotta, C., Bizzozero, L., Falcone, S., Rovere-Querini, P., Prinetti, A., Schuchman, E.H., Sonnino, S., Manfredi, A.A., and Clementi, E. (2007). Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res. 67, 7559–7564.

    Article  PubMed  CAS  Google Scholar 

  • Riganti, C., Miraglia, E., Viarisio, D., Costamagna, C., Pescarmona, G., Ghigo, D., and Bosia, A. (2005). Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 65, 516–525.

    PubMed  CAS  Google Scholar 

  • Secchiero, P., Gonelli, A., Celeghini, C., Mirandola, P., Guidotti, L., Visani, G., Capitani, S., and Zauli, G. (2001). Activation of the nitric oxide synthase pathway represents a key component of tumor necrosis factor-related apoptosis-inducing ligand-mediated cytotoxicity on hematologic malignancies. Blood 98, 2220–2228.

    Article  PubMed  CAS  Google Scholar 

  • Son, K.K. and Hall, K.J. (2000). Nitric oxide-mediated tumor cell killing of cisplatin-based interferon-gamma gene therapy in murine ovarian carcinoma. Cancer Gene Ther. 7, 1324–1328.

    Article  PubMed  CAS  Google Scholar 

  • Tang, Z., Bauer, J.A., Morrison, B., and Lindner, D.J. (2006). Nitrosylcobalamin promotes cell death via S nitrosylation of Apo2L/TRAIL receptor DR4. Mol. Cell Biol. 26, 5588–5594.

    Article  PubMed  CAS  Google Scholar 

  • Verovski, V.N., Van den Berge, D.L., Soete, G.A., Bols, B.L., and Storme, G.A. (1996). Intrinsic radiosensitivity of human pancreatic tumour cells and the radiosensitising potency of the nitric oxide donor sodium nitroprusside. Br. J. Cancer 74, 1734–1742.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zalcenstein, A., and Oren, M. (2003). Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ. 10, 468–476.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Cook, T., Alber, S., Liu, K., Kovesdi, I., Watkins, S.K., Vodovotz, Y., Billiar, T.R., and Blumberg, D. (2004). Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 64, 1386–1395.

    Article  PubMed  CAS  Google Scholar 

  • Wardman, P., Rothkamm, K., Folkes, L.K., Woodcock, M., and Johnston, P.J. (2007). Radiosensitization by nitric oxide at low radiation doses. Radiat. Res. 167, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Cook, J.A., Christodoulou, D., Krishna, M.C., Pacelli, R., Kim, S., DeGraff, W., Gamson, J., Vodovotz, Y., Russo, A., and Mitchell, J.B. (1997). Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide 1, 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Wood, P.J., Sansom, J.M., Stratford, I.J., Adams, G.E., Szabo, C., Thiemermann, C., and Vane, J.R. (1996). Changes in energy metabolism and X-ray sensitivity in murine tumours by the nitric oxide donor SIN-1. Br. J. Cancer Suppl. 27, S177–S180.

    PubMed  CAS  Google Scholar 

  • Worthington, J., Robson, T., O'Keeffe, M., and Hirst, D.G. (2002). Tumour cell radiosensitization using constitutive (CMV) and radiation inducible (WAF1) promoters to drive the iNOS gene: a novel suicide gene therapy. Gene Ther. 9, 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, H. (2008). Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, H., Yamaya, M., Nakayama, K., Sasaki, T., Ebihara, S., Kanda, A., Asada, M., Inoue, D., Suzuki, T., Okazaki, T., Takahashi, H., Yoshida, M., Kaneta, T., Ishizawa, K., Yamanda, S., Tomita, N., Yamasaki, M., Kikuchi, A., Kubo, H., and Sasaki, H. (2006). Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J. Clin. Oncol. 24, 688–694.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Jeannin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Cortier, M., Leon, L., Sassi, N., Paul, C., Jeannin, JF., Bettaieb, A. (2010). Nitric Oxide Is a Promising Enhancer for Cancer Therapy. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics