Skip to main content

Nitric Oxide: A Rate-Limiting Factor for Metastases Development

  • Chapter
  • First Online:
  • 1048 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Genomic and phenotypic instability associates with cancer cell heterogeneity. Although it has been argued that metastatic/invasive phenotypes are already present in primary tumors, highly aggressive and resistant cancer cell subsets may develop during in vivo growth and/or as a consequence of therapy. Moreover, factors such as the attack of our immune system or organ-specific microenvironments also affect cancer cell behavior and the subsequent response to drugs and/or other therapeutic agents. Interaction of cancer and endothelial cells in capillary beds initiates a cascade of molecular events that involve cytokines, growth factors, bioactive lipids, and reactive nitrogen and oxygen species (RNS and ROS) produced by either the cancer or the endothelial cells. Vascular endothelium-derived NO and H2O2 are not only cytotoxic for the cancer cells but also help to identify some critical molecular targets that appear essential for survival of invasive cells. Growing metastatic cells may keep adapting for survival in a sequence of molecular events where RNS play a key role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Mehdi, A.B., Tozawa, K., Fisher, A.B., Shientag, L., Lee, A., and Muschel, R.J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6(1), 100–102.

    Article  PubMed  CAS  Google Scholar 

  • Anasagasti, M.J., Alvarez, A., Martin, J.J., Mendoza, L., and Vidal-Vanaclocha, F. (1997a). Sinusoidal endothelium release of hydrogen peroxide enhances very late antigen-4-mediated melanoma cell adherence and tumor cytotoxicity during interleukin-1 promotion of hepatic melanoma metastasis in mice. Hepatology 25(4), 840–846.

    Article  PubMed  CAS  Google Scholar 

  • Anasagasti, M.J., Olaso, E., Calvo, F., Mendoza, L., Martin, J.J., Bidaurrazaga, J., and Vidal-Vanaclocha, F. (1997b). Interleukin 1-dependent and -independent mouse melanoma metastases. J. Natl. Cancer Inst. 89(9), 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Arai, M., Imai, H., Koumura, T., Yoshida, M., Emoto, K., Umeda, M., Chiba, N., and Nakagawa, Y. (1999). Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J. Biol. Chem. 274(8), 4924–4933.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, J.S. and Jones, D.P. (2002). Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. Faseb J. 16(10), 1263–1265.

    PubMed  CAS  Google Scholar 

  • Auguste, P., Fallavollita, L., Wang, N., Burnier, J., Bikfalvi, A., and Brodt, P. (2007). The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am. J. Pathol. 170(5) 1781–1792.

    Google Scholar 

  • Bayon, L.G., Izquierdo, M.A., Sirovich, I., van Rooijen, N., Beelen, R.H., and Meijer, S. (1996). Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology. 23(5), 1224–1231.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Baruch, A. (2008). Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin. Exp. Metastasis 25(4), 345–356.

    Article  PubMed  CAS  Google Scholar 

  • Benlloch, M., Ortega, A., Ferrer, P., Segarra, R., Obrador, E., Asensi, M., Carretero, J., and Estrela, J.M. (2005). Acceleration of glutathione efflux and inhibition of gamma-glutamyltranspeptidase sensitize metastatic B16 melanoma cells to endothelium-induced cytotoxicity. J. Biol. Chem. 280(8), 6950–6959.

    Article  PubMed  CAS  Google Scholar 

  • Borsig, L., Wong, R., Hynes, R.O., Varki, N.M., and Varki, A. (2002). Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl. Acad. Sci. U S A 99(4), 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  • Carretero, J., Obrador, E., Esteve, J.M., Ortega, A., Pellicer, J.A., Sempere, F.V., and Estrela, J.M. (2001). Tumoricidal activity of endothelial cells. Inhibition of endothelial nitric oxide production abrogates tumor cytotoxicity induced by hepatic sinusoidal endothelium in response to B16 melanoma adhesion in vitro. J. Biol. Chem. 276(28), 25775–25782.

    Article  PubMed  CAS  Google Scholar 

  • Clancy, R., Leszczynska, J., Amin, A., Levartovsky, D., and Abramson, S.B. (1995). Nitric oxide stimulates ADP ribosylation of actin in association with the inhibition of actin polymerization in human neutrophils. J. Leukoc Biol. 58(2), 196–202.

    PubMed  CAS  Google Scholar 

  • Costantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92(13), 1042–1053.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, A.F., Groom, A.C., and MacDonald, I.C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer. 2(8), 563–572.

    Article  PubMed  CAS  Google Scholar 

  • Chiang, K.T., Switzer, C.H., Akali, K.O., and Fukuto, J.M. (2000). The role of oxygen and reduced oxygen species in nitric oxide-mediated cytotoxicity: studies in the yeast Saccharomyces cerevisiae model system. Toxicol. Appl. Pharmacol. 167(1), 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Chin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S., and Esumi, H. (1997). Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15(4), 437–442.

    Article  PubMed  CAS  Google Scholar 

  • Dal Secco, D., Paron, J.A., de Oliveira, S.H., Ferreira, S.H., Silva, J.S., and Cunha Fde, Q. (2003). Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. Nitric Oxide 9(3), 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K.J. (1999). The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48(1), 41–47.

    PubMed  CAS  Google Scholar 

  • Engelhardt, B. and Wolburg, H. (2004). Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34(11), 2955–2963.

    Article  PubMed  CAS  Google Scholar 

  • Farias-Eisner, R., Chaudhuri, G., Aeberhard, E., and Fukuto, J.M. (1996). The chemistry and tumoricidal activity of nitric oxide/hydrogen peroxide and the implications to cell resistance/susceptibility. J. Biol. Chem. 271(11), 6144–6151.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, H.H., Costa, R.A., Jacheta, J.M., Martins, A.R., Medeiros, M.V., Macedo-Soares, M.F., De Luca, I.M., Antunes, E., and De Nucci, G. (2004). Modulation of eosinophil migration from bone marrow to lungs of allergic rats by nitric oxide. Biochem. Pharmacol. 68(4), 631–639.

    Article  PubMed  CAS  Google Scholar 

  • Fidler, I.J. (1970). Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2'-deoxyuridine. J. Natl. Cancer Inst. 45(4), 773–782.

    PubMed  CAS  Google Scholar 

  • Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer. 3(6), 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Fokas, E., Engenhart-Cabillic, R., Daniilidis, K., Rose, F., and An, H.X. (2007). Metastasis: the seed and soil theory gains identity. Cancer Metastasis. Rev. 26(3–4), 705–715.

    Article  PubMed  Google Scholar 

  • Fratelli, M., Goodwin, L.O., Orom, U.A., Lombardi, S., Tonelli, R., Mengozzi, M., and Ghezzi, P. (2005). Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc. Natl. Acad. Sci. U S A 102(39), 13998–14003.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006). The role of nitric oxide in tumour progression. Nat. Rev. Cancer. 6(7), 521–534.

    Article  PubMed  CAS  Google Scholar 

  • Garofalo, A., Chirivi, R.G., Foglieni, C., Pigott, R., Mortarini, R., Martin-Padura, I., Anichini, A., Gearing, A.J., Sanchez-Madrid, F., Dejana, E., et al. (1995). Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Res. 55(2), 414–419.

    PubMed  CAS  Google Scholar 

  • Gauthier, N., Lohm, S., Touzery, C., Chantome, A., Perette, B., Reveneau, S., Brunotte, F., Juillerat-Jeanneret, L., and Jeannin, J.F. (2004). Tumour-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs. Carcinogenesis. 25(9), 1559–1565.

    Article  PubMed  CAS  Google Scholar 

  • Gratton, J.P., Lin, M.I., Yu, J., Weiss, E.D., Jiang, Z.L., Fairchild, T.A., Iwakiri, Y., Groszmann, R., Claffey, K.P., Cheng, Y.C., and Sessa, W.C. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1), 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Gross, A. (2001). BCL-2 proteins: regulators of the mitochondrial apoptotic program. IUBMB Life 52(3–5), 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W. and Giancotti, F.G. (2004). Integrin signalling during tumour progression. Nat Rev Mol. Cell Biol. 5(10), 816–826.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M.P., Evanoff, V., and Hart, C.M. (1997). Nitric oxide attenuates hydrogen peroxide-mediated injury to porcine pulmonary artery endothelial cells. Am. J. Physiol. 272(6 Pt 1), L1133–1141.

    PubMed  CAS  Google Scholar 

  • Hall, A.G. (1999). Review: The role of glutathione in the regulation of apoptosis. Eur. J. Clin. Invest. 29(3), 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Hickman, J.A. (2002). Apoptosis and tumourigenesis. Curr. Opin. Genet. Dev. 12(1), 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, D.G. and Robson, T. (2007). Nitrosative stress in cancer therapy. Front Biosci. 12, 3406–3418.

    Article  PubMed  CAS  Google Scholar 

  • Ioannidis, I. and de Groot, H. (1993). Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: evidence for co-operative action with hydrogen peroxide. Biochem. J. 296(Pt 2), 341–345.

    PubMed  CAS  Google Scholar 

  • Jadeski, L.C., Hum, K.O., Chakraborty, C., and Lala, P.K. (2000). Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer 86(1), 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Jadeski, L.C., Chakraborty, C., and Lala, P.K. (2003). Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int. J. Cancer 106(4), 496–504.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, J.M., Battle, P., Waller, H., Edmiston, K.H., Stolz, D.B., Watkins, S.C., Locker, J., and Skena, K. (1999). Reactive nitrogen and oxygen radicals formed during hepatic ischemia-reperfusion kill weakly metastatic colorectal cancer cells. Cancer Res. 59(8), 1825–1829.

    PubMed  CAS  Google Scholar 

  • Joseph, B., Marchetti, P., Formstecher, P., Kroemer, G., Lewensohn, R., and Zhivotovsky, B. (2002). Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene 21(1), 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T., and Bredesen, D.E. (1993). Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262(5137), 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  • Kashiwagi, S., Izumi, Y., Gohongi, T., Demou, Z.N., Xu, L., Huang, P.L., Buerk, D.G., Munn, L.L., Jain, R.K., and Fukumura, D. (2005). NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J. Clin. Invest. 115(7), 1816–1827.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, K., Smith, R.S., Jr., Hsieh, C.M., Sun, J., Chao, J., and Liao, J.K. (2003). Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell Biol. 23(16), 5726–5737.

    Article  PubMed  CAS  Google Scholar 

  • Khatib, A.M., Kontogiannea, M., Fallavollita, L., Jamison, B., Meterissian, S., and Brodt, P. (1999). Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res. 59(6), 1356–1361.

    PubMed  CAS  Google Scholar 

  • Klemke, M., Weschenfelder, T., Konstandin, M.H., and Samstag, Y. (2007). High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J. Cell Physiol. 212(2), 368–374.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, H., Boelte, K.C., and Lin, P.C. (2007). Endothelial cell adhesion molecules and cancer progression. Curr. Med. Chem. 14(4), 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Konopka, T.E., Barker, J.E., Bamford, T.L., Guida, E., Anderson, R.L., and Stewart, A.G. (2001). Nitric oxide synthase II gene disruption: implications for tumor growth and vascular endothelial growth factor production. Cancer Res. 61(7), 3182–3187.

    PubMed  CAS  Google Scholar 

  • Koukoulis, G.K., Patriarca, C., and Gould, V.E. (1998). Adhesion molecules and tumor metastasis. Hum. Pathol. 29(9), 889–892.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G. and Reed, J.C. (2000). Mitochondrial control of cell death. Nat. Med. 6(5), 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Kroncke, K.D. (2003). Mechanisms and biological consequences of nitrosative stress. Biol. Chem. 384(10–11), 1341.

    PubMed  Google Scholar 

  • Kubes, P. (1995). Nitric oxide affects microvascular permeability in the intact and inflamed vasculature. Microcirculation 2(3), 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Li, L.M., Nicolson, G.L., and Fidler, I.J. (1991). Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine vascular endothelial cells. Cancer Res. 51(1), 245–254.

    PubMed  CAS  Google Scholar 

  • Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64(2), 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, S.W. and Lin, A.W. (2000). Apoptosis in cancer. Carcinogenesis 21(3), 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Luzzi, K.J., MacDonald, I.C., Schmidt, E.E., Kerkvliet, N., Morris, V.L., Chambers, A.F., and Groom, A.C. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153(3), 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, H.E., Merchant, K., and Stamler, J.S. (2000). Nitrosation and oxidation in the regulation of gene expression. Faseb J. 14(13), 1889–1900.

    Article  PubMed  CAS  Google Scholar 

  • Martensson, J., Lai, J.C., and Meister, A. (1990). High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl. Acad. Sci. U S A 87(18), 7185–7189.

    Article  PubMed  CAS  Google Scholar 

  • Marui, N., Offermann, M.K., Swerlick, R., Kunsch, C., Rosen, C.A., Ahmad, M., Alexander, R.W., and Medford, R.M. (1993). Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J. Clin. Invest. 92(4), 1866–1874.

    Article  PubMed  CAS  Google Scholar 

  • Melino, G., Bernassola, F., Knight, R.A., Corasaniti, M.T., Nistico, G., and Finazzi-Agro, A. (1997). S-nitrosylation regulates apoptosis. Nature. 388(6641), 432–433.

    Article  PubMed  CAS  Google Scholar 

  • Mena, S., Benlloch, M., Ortega, A., Carretero, J., Obrador, E., Asensi, M., Petschen, I., Brown, B.D., and Estrela, J.M. (2007). Bcl-2 and glutathione depletion sensitizes B16 melanoma to combination therapy and eliminates metastatic disease. Clin. Cancer Res. 13(9), 2658–2666.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza, L., Olaso, E., Anasagasti, M.J., Fuentes, A.M., and Vidal-Vanaclocha, F. (1998). Mannose receptor-mediated endothelial cell activation contributes to B16 melanoma cell adhesion and metastasis in liver. J. Cell Physiol. 174(3), 322–330.

    Article  PubMed  CAS  Google Scholar 

  • Mirkovic, N., Voehringer, D.W., Story, M.D., McConkey, D.J., McDonnell, T.J., and Meyn, R.E. (1997). Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 15(12), 1461–1470.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa, M., Sato, E.F., Kuroki, T., Utsumi, K., and Inoue, M. (1998). Macrophage-derived nitric oxide induces apoptosis of rat hepatoma cells in vivo. Hepatology. 28(6), 1474–1480.

    Article  PubMed  CAS  Google Scholar 

  • Obrador, E., Navarro, J., Mompo, J., Asensi, M., Pellicer, J.A., and Estrela, J.M. (1997). Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo. Biochem. J. 325(Pt 1), 183–189.

    PubMed  CAS  Google Scholar 

  • Obrador, E., Carretero, J., Esteve, J.M., Pellicer, J.A., Pascual, A., Petschen, I., and Estrela, J.M. (2001). Glutamine potentiates TNF-alpha-induced tumor cytotoxicity. Free Radic. Biol. Med. 31(5), 642–650.

    Article  PubMed  CAS  Google Scholar 

  • Obrador, E., Carretero, J., Ortega, A., Medina, I., Rodilla, V., Pellicer, J.A., and Estrela, J.M. (2002). gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver. Hepatology 35(1), 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Orr, F.W., Wang, H.H., Lafrenie, R.M., Scherbarth, S., and Nance, D.M. (2000). Interactions between cancer cells and the endothelium in metastasis. J. Pathol. 190(3), 310–329.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, A., Ferrer, P., Carretero, J., Obrador, E., Asensi, M., Pellicer, J.A., and Estrela, J.M. (2003a). Down-regulation of glutathione and Bcl-2 synthesis in mouse B16 melanoma cells avoids their survival during interaction with the vascular endothelium. J. Biol. Chem. 278(41), 39591–39599.

    Article  PubMed  CAS  Google Scholar 

  • Ortega, A.L., Carretero, J., Obrador, E., Gambini, J., Asensi, M., Rodilla, V., and Estrela, J.M. (2003b). Tumor cytotoxicity by endothelial cells. Impairment of the mitochondrial system for glutathione uptake in mouse B16 melanoma cells that survive after in vitro interaction with the hepatic sinusoidal endothelium. J. Biol. Chem. 278(16), 13888–13897.

    Article  PubMed  CAS  Google Scholar 

  • Owen-Schaub, L.B., van Golen, K.L., Hill, L.L., and Price, J.E. (1998). Fas and Fas ligand interactions suppress melanoma lung metastasis. J. Exp. Med. 188(9), 1717–1723.

    Article  PubMed  CAS  Google Scholar 

  • Ozturk, H., Buyukbayram, H., Ozdemir, E., Ketani, A., Gurel, A., Onen, A., and Otcu, S. (2003). The effects of nitric oxide on the expression of cell adhesion molecules (ICAM-1, UEA-1, and tenascin) in rats with unilateral testicular torsion. J. Pediatr. Surg. 38(11), 1621–1627.

    Article  PubMed  Google Scholar 

  • Pacelli, R., Wink, D.A., Cook, J.A., Krishna, M.C., DeGraff, W., Friedman, N., Tsokos, M., Samuni, A., and Mitchell, J.B. (1995). Nitric oxide potentiates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med. 182(5), 1469–1479.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, H., Orr, F.W., Jensen, D., Wang, H.H., McIntosh, A.R., Hasinoff, B.B., Nance, D.M., Pylypas, S., Qi, K., Song, C., Muschel, R.J., and Al-Mehdi, A.B. (2003). Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am. J. Pathol. 162(2), 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Radisavljevic, Z., Avraham, H., and Avraham, S. (2000). Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J. Biol. Chem. 275(27), 20770–20774.

    Article  PubMed  CAS  Google Scholar 

  • Radomski, M.W., Palmer, R.M., and Moncada, S. (1990). An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. U S A 87(13), 5193–5197.

    Article  PubMed  CAS  Google Scholar 

  • Radomski, M.W., Jenkins, D.C., Holmes, L., and Moncada, S. (1991). Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res. 51(22), 6073–6078.

    PubMed  CAS  Google Scholar 

  • Rao, R.M., Yang, L., Garcia-Cardena, G., and Luscinskas, F.W. (2007). Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res. 101(3), 234–247.

    Article  PubMed  CAS  Google Scholar 

  • Reed, J.C. (1997). Bcl-2 family proteins: strategies for overcoming chemoresistance in cancer. Adv. Pharmacol. 41, 501–532.

    Article  PubMed  CAS  Google Scholar 

  • Rudin, C.M., Yang, Z., Schumaker, L.M., VanderWeele, D.J., Newkirk, K., Egorin, M.J., Zuhowski, E.G. and Cullen, K.J. (2003). Inhibition of glutathione synthesis reverses Bcl-2-mediated cisplatin resistance. Cancer Res. 63(2), 312–318.

    PubMed  CAS  Google Scholar 

  • Sahai, E. (2007). Illuminating the metastatic process. Nat. Rev. Cancer. 7(10), 737–749.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, A.L., Menconi, M.J., Unno, N., Ezzell, R.M., Casey, D.M., Gonzalez, P.K., and Fink, M.P. (1995). Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am. J. Physiol. 268(2 Pt 1), G361–373.

    PubMed  CAS  Google Scholar 

  • Siegert, A., Rosenberg, C., Schmitt, W.D., Denkert, C., and Hauptmann, S. (2002). Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br. J. Cancer. 86(8), 1310–1315.

    Article  PubMed  CAS  Google Scholar 

  • Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H., and Fujii-Kuriyama, Y. (1998). Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc. Natl. Acad. Sci. U S A 95(13), 7368–7373.

    Article  PubMed  CAS  Google Scholar 

  • Takaoka, A., Adachi, M., Okuda, H., Sato, S., Yawata, A., Hinoda, Y., Takayama, S., Reed, J.C., and Imai, K. (1997). Anti-cell death activity promotes pulmonary metastasis of melanoma cells. Oncogene 14(24), 2971–2977.

    Article  PubMed  CAS  Google Scholar 

  • Tu, Y.T., Tao, J., Liu, Y.Q., Li, Y., Huang, C.Z., Zhang, X.B., and Lin, Y. (2006). Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in human malignant melanoma and their relation to angiogenesis. Clin. Exp. Dermatol. 31(3), 413–418.

    Article  PubMed  Google Scholar 

  • Urbich, C., Reissner, A., Chavakis, E., Dernbach, E., Haendeler, J., Fleming, I., Zeiher, A.M., Kaszkin, M., and Dimmeler, S. (2002). Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. Faseb J. 16(7), 706–708.

    PubMed  CAS  Google Scholar 

  • Vahrmeijer, A.L., Hoetelmans, R.W., Mulder, G.J., Schutrups, J., van Vlierberghe, R.L., van de Velde, C.J., and van Dierendonck, J.H. (2000). Development of resistance to glutathione depletion-induced cell death in CC531 colon carcinoma cells: association with increased expression of bcl-2. Biochem. Pharmacol. 59(12), 1557–1562.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.H., Nance, D.M., and Orr, F.W. (1999). Murine hepatic microvascular adhesion molecule expression is inducible and has a zonal distribution. Clin. Exp. Metastasis. 17(2), 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.H., McIntosh, A.R., Hasinoff, B.B., Rector, E.S., Ahmed, N., Nance, D.M., and Orr, F.W. (2000). B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res. 60(20), 5862–5869.

    PubMed  CAS  Google Scholar 

  • Wang, H.H., McIntosh, A.R., Hasinoff, B.B., MacNeil, B., Rector, E., Nance, D.M., and Orr, F.W. (2002). Regulation of B16F1 melanoma cell metastasis by inducible functions of the hepatic microvasculature. Eur. J. Cancer 38(9), 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.H., Qiu, H., Qi, K., and Orr, F.W. (2005a). Current views concerning the influences of murine hepatic endothelial adhesive and cytotoxic properties on interactions between metastatic tumor cells and the liver. Comp. Hepatol. 4, 8.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Shi, G.G., Yao, J.C., Gong, W., Wei, D., Wu, T.T., Ajani, J.A., Huang, S., and Xie, K. (2005b). Expression of endothelial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer. Gastric. Cancer 8(1), 18–28.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, L. (1990). Metastatic inefficiency. Adv. Cancer Res. 54, 159–211.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, L., Nannmark, U., Johansson, B.R., and Bagge, U. (1992). Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis. Int. J. Cancer 50(1), 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. and Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Semin. Cancer Biol. 12(2), 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Williams, E.L. and Djamgoz, M.B. (2005). Nitric oxide and metastatic cell behaviour. Bioessays. 27(12), 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Hanbauer, I., Krishna, M.C., DeGraff, W., Gamson, J., and Mitchell, J.B. (1993). Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. U S A 90(21), 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  • Wink, D.A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M.W., and Mitchell, J.B. (1998). The multifaceted roles of nitric oxide in cancer. Carcinogenesis. 19(5), 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C.W., Lee, A., Shientag, L., Yu, J., Dong, Y., Kao, G., Al-Mehdi, A.B., Bernhard, E.J., and Muschel, R.J. (2001). Apoptosis: an early event in metastatic inefficiency. Cancer Res. 61(1), 333–338.

    PubMed  CAS  Google Scholar 

  • Xie, K., Huang, S., Dong, Z., Juang, S.H., Gutman, M., Xie, Q.W., Nathan, C., and Fidler, I.J. (1995). Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J. Exp. Med. 181(4), 1333–1343.

    Article  PubMed  CAS  Google Scholar 

  • Xie, K. and Huang, S. (2003). Regulation of cancer metastasis by stress pathways. Clin. Exp. Metastasis. 20(1), 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D.Z., Lu, Q., and Deitch, E.A. (2002). Nitric oxide directly impairs intestinal barrier function. Shock. 17(2), 139–145.

    Article  PubMed  Google Scholar 

  • Zaragoza, C., Soria, E., Lopez, E., Browning, D., Balbin, M., Lopez-Otin, C., and Lamas, S. (2002). Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol. Pharmacol. 62(4), 927–935.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Estrela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ortega, A., Mena, S., Estrela, J.M. (2010). Nitric Oxide: A Rate-Limiting Factor for Metastases Development. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics