Skip to main content

Biodegradation of Chlorinated Ethenes

  • Chapter
  • First Online:
In Situ Remediation of Chlorinated Solvent Plumes

Part of the book series: SERDP/ESTCP Environmental Remediation Technology ((SERDP/ESTCP))

Abstract

Biodegradation of chlorinated ethenes by naturally occurring or artificially enhanced processes is an important component of current site remediation strategies. At this writing, several microbial mechanisms for chlorinated ethene transformation and degradation have been identified. The purpose of this chapter is to briefly summarize the current understanding of those processes that lead to the biodegradation of chlorinated ethenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson DT, Parkin GF. 2001. Product distribution during transformation of multiple contaminants by a high-rate, tetrachloroethene-dechlorinating enrichment culture. Biodegradation 12:337–348.

    Article  CAS  Google Scholar 

  • Asplund G. 1995. Origin and occurrence of halogenated organic matter in soil. In Grimvall A, de Leer EWB, eds, Naturally-Produced Organohalogens. Kluwer Academic Publishers, Boston, MA, USA, pp 35–48.

    Chapter  Google Scholar 

  • Baek NH, Jaffé PR. 1989. The degradation of trichloroethylene in mixed methanogenic cultures. J Environ Qual 18:515–518.

    Article  CAS  Google Scholar 

  • Ballapragada BS, Puhakka JA, Stensel HD, Ferguson JF. 1995. Development of tetrachloroethene transforming anaerobic cultures from municipal digester sludge. In Hinchee RE, Leeson A, Semprini L, eds, Bioremediation of Chlorinated Solvents. Battelle Press, Columbus, OH, USA, pp 91–97.

    Google Scholar 

  • Ballapragada BS, Stensel HD, Puhakka JA, Ferguson JF. 1997. Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ Sci Technol 31:1728–1734.

    Article  CAS  Google Scholar 

  • Barrio-Lage GA, Parsons FZ, Nassar RS, Lorenzo PA. 1987. Biotransformation of trichloroethene in a variety of subsurface materials. Environ Toxicol Chem 6:571–578.

    Article  CAS  Google Scholar 

  • Barrio-Lage GA, Parsons FZ, Barbitz RM, Lorenzo PL, Archer HE. 1990. Enhanced anaerobic biodegradation of vinyl chloride in groundwater. Environ Toxicol Chem 9:403–415.

    Article  CAS  Google Scholar 

  • Battelle. 2001. Use of Cometabolic Air Sparging to Remediate Chloroethene-Contaminated Groundwater Aquifers. Final report. Environmental Security Technology Certification Program, Arlington, VA, USA. www.estcp.org/Technology/upload/CU-9810-FR-01.pdf. Accessed July 22, 2009.

  • Bouwer EJ. 1994. Bioremediation of chlorinated solvents using alternate electron acceptors. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 149–175.

    Google Scholar 

  • Bradley PM. 2003. History and ecology of chloroethene biodegradation: A review. Bioremediation J 7:81–109.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1996. Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ Sci Technol 30:2084–2086.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1997. Kinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions. Environ Sci Technol 31:2692–2696.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1998a. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ Sci Technol 32:553–557.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle, FH. 1998b. Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1999a. Methane as a product of chloroethene biodegradation under methanogenic conditions. Environ Sci Technol 33: 653–656.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 1999b. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride. Environ Sci Technol 33: 3473–3476.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 2000a. Aerobic microbial mineralization of dichloroethene as sole carbon substrate. Environ Sci Technol 34: 221–223.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 2000b. Acetogenic microbial degradation of vinyl chloride. Environ Sci Technol 34: 2761–2763.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 2002. Microbial mineralization of ethene under sulfate reducing conditions. Bioremediation J 6:1–8.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH. 2007. Accumulation of dechlorination daughter products: A valid metric of chloroethene biodegradation? Remediat J 17:7–22.

    Article  Google Scholar 

  • Bradley PM, Chapelle FH, Lovley DR. 1998a. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl Environ Microbiol 64:3102–3105.

    CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Wilson JT. 1998b. Field and laboratory evidence for intrinsic biodegradation of vinyl chloride contamination in a Fe(III)-reducing aquifer. J Contam Hydrol 31:111–127.

    Article  CAS  Google Scholar 

  • Bradley PM, Landmeyer JE, Dinicola RS. 1998c. Anaerobic oxidation of [1,2-14C] dichloroethene under Mn(IV)-reducing conditions. Appl Environ Microbiol 64:1560–1562.

    CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Landmeyer JE. 2001a. Effect of redox conditions on MTBE biodegradation in surface water sediments. Environ Sci Technol 35:4643–4647.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Landmeyer JE. 2001b. Methyl t-butyl ether mineralization in surface-water sediment microcosms under denitrifying conditions. Appl Environ Microbiol 67:1975–1978.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Landmeyer JE. 2006. Effect of H2 and redox condition on biotic and abiotic MTBE transformation. Ground Water Monitor Remed 26:74–81.

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH, Löffler FE. 2008. Anoxic mineralization: Environmental reality or experimental artifact? Ground Water Monitor Remediat 28:47–49.

    Article  Google Scholar 

  • Buschhorn H, Dürre P, Gottschalk G. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840.

    CAS  Google Scholar 

  • Carr CS, Hughes JB. 1998. Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity. Environ Sci Technol 32:1817–1824.

    Article  CAS  Google Scholar 

  • Carter SR, Jewell WJ. 1993. Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures. Water Res 27:607–615.

    Article  CAS  Google Scholar 

  • Chapelle FH. 1996. Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509, pp 17–20.

    Google Scholar 

  • Chapelle FH, Bradley PM. 1998. Selecting remediation goals by assessing the natural attenuation capacity of ground-water systems. Bioremediation J 2:227–238.

    CAS  Google Scholar 

  • Chapelle FH, Bradley PM, Casey CC. 2005. Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s Reagent. Ground Water Monitor Remed 25:131–141.

    Article  CAS  Google Scholar 

  • Cole JR, Fathepure BZ, Tiedje JT. 1995. Tetrachlorethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation J 6:167–172.

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TM, Gossett JM, Spain JC. 2002a. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171.

    Article  CAS  Google Scholar 

  • Coleman NV, Mattes TM, Gossett JM, Spain JC. 2002b. Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl Environ Microbiol 68:2726–2730.

    Article  CAS  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL. 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959.

    Article  CAS  Google Scholar 

  • Davis JW, Carpenter CL. 1990. Aerobic biodegradation of vinyl chloride in groundwater samples. Appl Environ Microbiol 56:3870–3880.

    Google Scholar 

  • De Bruin WP, Kotterman MJJ, Posthumus MA, Schraa G, Zehnder AJB. 1992. Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58:1996–2000.

    CAS  Google Scholar 

  • DeWeerd KA, Suflita JM. 1990. Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei. Appl Environ Microbiol 56:2999–3005.

    CAS  Google Scholar 

  • DiStefano TD, Gossett JM, Zinder SH. 1991. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57:2287–2292.

    CAS  Google Scholar 

  • Dolan ME, McCarty PL. 1995. Small-column microcosm for assessing methane-stimulated vinyl chloride transformation in aquifer samples. Environ Sci Technol 29:1892–1897.

    Article  CAS  Google Scholar 

  • Dolfing J, Janssen DB. 1994. Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation J 5:21–28.

    CAS  Google Scholar 

  • Eichler B, Schink B. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobic. Arch Microbiol 140:147–152.

    Article  CAS  Google Scholar 

  • El Fantroussi S, Naveau H, Agathos SN. 1998. Anaerobic dechlorinating bacteria. Biotechnol Prog 14:167–188.

    Article  CAS  Google Scholar 

  • Elango VK, Liggenstoffer AS, Fathepure BZ. 2006. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl Microbiol Biotechnol 72:1270–1275.

    Article  CAS  Google Scholar 

  • Emde R, Schink B. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch Microbiol 149:142–148.

    Article  CAS  Google Scholar 

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL. 2005. Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the eastern Snake River plain aquifer. Appl Environ Microbiol 71:2016–2025.

    Article  CAS  Google Scholar 

  • Fan S, Scow KM. 1993. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil. Appl Environ Microbiol 59:1911–1918.

    CAS  Google Scholar 

  • Fathepure BZ, Boyd SA. 1988a. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol 54:2976–2980.

    CAS  Google Scholar 

  • Fathepure BZ, Boyd SA. 1988b. Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol Lett 49:149–156.

    CAS  Google Scholar 

  • Fathepure BZ, Nengu JP, Boyd SA. 1987. Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53:2671–2674.

    CAS  Google Scholar 

  • Fennell DE, Stover MA, Zinder SH, Gossett JM. 1995. Comparison of alternative electron donors to sustain PCE anaerobic reductive dechlorination. In Hinchee RE, Leeson A, Semprini L, eds, Bioremediation of Chlorinated Solvents. Battelle Press, Columbus, OH, USA, pp 9–16.

    Google Scholar 

  • Ferrey M, Wilson JT. 2002. Complete natural attenuation of PCE and TCE without vinyl chloride and ethene accumulation. In Gavaskar AR, Chen ASC, eds, Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA.

    Google Scholar 

  • Ferrey M, Wilkin RT, Ford RG, Wilson JT. 2004. Nonbiological removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite. Environ Sci Technol 38:1746–1752.

    Article  CAS  Google Scholar 

  • Fitch MW, Speitel Jr GE, Georgiou G. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b PP358. Appl Environ Microbiol 62:1124–1128.

    CAS  Google Scholar 

  • Flynn SJ, Löffler FE, Tiedje JM. 2000. Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ Sci Technol 34, 1056–1061.

    Article  CAS  Google Scholar 

  • Freedman DL, Gossett JM. 1989. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55:2144–2151.

    CAS  Google Scholar 

  • Fuller ME, Mu DY, Scow KM. 1995. Biodegradation of trichloroethylene and toluene by indigenous microbial populations in vadose sediments. Microb Ecology 29:311–325.

    Article  CAS  Google Scholar 

  • Gerritse J, Renard V, Visser J, Gottschal JC. 1995. Complete degradation of tetrachlorethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Appl Environ Microbiol 43:920–928.

    Google Scholar 

  • Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC. 1996. Desulfitobacterium sp. strain PCE1, and anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140.

    Article  CAS  Google Scholar 

  • Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri. TCE1. Appl Environ Microbiol 65:5212–5221.

    CAS  Google Scholar 

  • Gibson SA, Sewell GW. 1992. Stimulation of reductive dechlorination of tetrachloroethene in anaerobic aquifer microcosms by addition of short-chain organic acids or alcohols. Appl Environ Microbiol 58:1392–1393.

    CAS  Google Scholar 

  • Gossett JM. 2010. Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol 44:1405–1411.

    Article  CAS  Google Scholar 

  • Gossett JM, Zinder SH. 1996. Microbiological aspects relevant to natural attenuation of chlorinated ethenes. In Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. U.S. Environmental Protection Agency, Washington, DC, USA, pp 10–13.

    Google Scholar 

  • Gribble GW. 1992. Naturally occurring organohalogen products. J Natural Products 55:1353–1395.

    Article  CAS  Google Scholar 

  • Gribble GW. 1994. The natural production of chlorinated compounds. Environ Sci Technol 28:310A-319A.

    CAS  Google Scholar 

  • Harr J. 1995. A Civil Action. Vintage Books, New York, NY, USA. 502 p.

    Google Scholar 

  • Hartmans S. 1995. Microbial degradation of vinyl chloride. In Singh VP, ed, Biotransformations: Microbial Degradation of Health Risk Compounds. Elsevier Science, Amsterdam, The Netherlands, pp 239–248.

    Google Scholar 

  • Hartmans S, deBont JAM. 1992. Aerobic vinyl chloride metabolism in Mycobacterium aurum L1. Appl Environ Microbiol 58:1220–1226.

    CAS  Google Scholar 

  • Hartmans S, deBont JAM, Tramper J, Luyben KCAM. 1985. Bacterial degradation of vinyl chloride. Biotechnol Lett 7:383–388.

    Article  CAS  Google Scholar 

  • Hartmans S, Kaptein A, Tramper J, deBont JAM. 1992. Characterization of a Mycobacterium sp. and Xanthobacter sp. for the removal of vinyl chloride and 1,2-dichloroethane from waste gas. Appl Environ Microbiol 37:796–801.

    Google Scholar 

  • Haston ZC, McCarty PL. 1999. Chlorinated ethene half-velocity coefficients (ks) for reductive dehalogenation. Environ Sci Technol 33:223–226.

    Article  CAS  Google Scholar 

  • Haston ZC, Sharma PK, Black JN, McCarty PL. 1994. Enhanced reductive dechlorination of chlorinated ethenes. Proceedings, USEPA Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/600/R-94/075.

    Google Scholar 

  • Hata J, Takamizawa K, Miyata N, Iwahori K. 2003. Biodegradation of cis-1,2-dichloroethylene and vinyl chloride in anaerobic cultures enriched from landfill leachate sediment under Fe(III)-reducing conditions. Biodegradation J 14:275–283.

    Article  CAS  Google Scholar 

  • He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE. 2002. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36:3945–3952.

    Article  CAS  Google Scholar 

  • He J, Ritalahti KM, Aiello MR, Löffler FE. 2003. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69:996–1003.

    Article  CAS  Google Scholar 

  • Holliger C, Schraa G, Stams AJM, Zehnder AJB. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59:2991–2997.

    CAS  Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJB. 1998. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321.

    Article  CAS  Google Scholar 

  • Hopkins GD, McCarty PL. 1995. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637.

    Article  CAS  Google Scholar 

  • Jablonski PE, Ferry JG. 1992. Reductive dechlorination of trichloroethylene by the CO-reduced CO dehydrogenase enzyme complex from Methanosarcina thermophila. FEMS Microbiol Lett 96:55–60.

    Article  CAS  Google Scholar 

  • Kitanidis PK, Semprini L, Kampbell DH, Wilson JT. 1993. Natural anaerobic bioremediation of TCE at the St Joseph, Michigan, Superfund site. Proceedings, USEPA Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/600/R-93/054. USEPA, Washington, DC, USA, pp 47–50.

    Google Scholar 

  • Klier NJ, West RJ, Donberg PA. 1999. Aerobic biodegradation of dichloroethylenes in surface and subsurface soils. Chemosphere 38:1175–1188.

    Article  CAS  Google Scholar 

  • Koene-Cottaar FHM, Schraa G. 1998. Anaerobic reduction of ethene to ethane in an enrichment culture. FEMS Microbial Ecol 25:251–256.

    Article  CAS  Google Scholar 

  • Krumholz LR. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethene and trichloroethene as electron acceptors. Internat J Syst Bacteriol 47:1262–1263.

    Article  CAS  Google Scholar 

  • Krumholz LR, Sharp R, Fishbain SS. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113.

    CAS  Google Scholar 

  • Löffler FE, Tiedje JM, Sanford RA. 1999. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056.

    Google Scholar 

  • Löffler FE, Sun Q, Li J, Tiedje JM. 2000. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374.

    Article  Google Scholar 

  • Logan BE, Zhang H, Mulvaney P, Milner MG, Head IM, Unz RF. 2001. Kinetics of perchlorate- and chlorate-respiring bacteria. Appl Environ Microbiol 67:2499–2506.

    Article  CAS  Google Scholar 

  • Magnuson JK, Stern RV, Gossett JM, Zinder SH, Burris DR. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl Environ Microbiol 64:1270–1275.

    CAS  Google Scholar 

  • Major DW, Hodgins WW, Butler BJ. 1991. Field and laboratory evidence of in situ biotransformation of tetrachloroethene to ethene and ethane at a chemical transfer facility in North Toronto. In Hinchee RE, Olfenbuttel RF, eds, On Site Bioreclamation. Butterworth-Heinemann, Boston, MA, USA, pp 147–171.

    Google Scholar 

  • Malachowsky KJ, Phelps TJ, Teboli AB, Minnikin DE, White DC. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride and aromatic compounds by Rhodococcus species. Appl Environ Microbiol 60:542–548.

    CAS  Google Scholar 

  • Mars AE, Houwing J, Dolfing J, Janssen DB. 1996. Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl Environ Microbiol 62:886–891.

    CAS  Google Scholar 

  • Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH. 1995. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol 61:3928–3933.

    Google Scholar 

  • Maymó-Gatell X, Chien YT, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Sci 276:1568–1571.

    Article  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder SH. 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Appl Environ Microbiol 65:3108–3113.

    Google Scholar 

  • Maymó-Gatell X, Nijenhuis I, Zinder SH. 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by Dehalococcoides ethenogenes. Environ Sci Technol 35:516–521.

    Article  CAS  Google Scholar 

  • Mazur CS, Jones J. 2001. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation. Environ Sci Technol 35:4783–4788.

    Article  CAS  Google Scholar 

  • McCarty PL. 1996. Biotic and abiotic transformations of chlorinated solvents in ground water. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509, pp 5–9.

    Google Scholar 

  • McCarty PL, Reinhard M. 1993. Biological and chemical transformations of halogenated aliphatic compounds in aquatic and terrestrial environments. In Oremland RS, ed, The Biogeochemistry of Global Change: Radiative Trace Gases. Chapman & Hall, Inc., New York, NY, USA, pp 839–852.

    Chapter  Google Scholar 

  • McCarty PL, Semprini L. 1994. Ground-water treatment for chlorinated solvents. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 87–116.

    Google Scholar 

  • Mohn WW, Tiedje JM. 1992. Microbial reductive dehalogenation. Microbiol Rev 56:482–507.

    CAS  Google Scholar 

  • Moore AT, Vira A, Fogel S. 1989. Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator. Environ Sci Technol 23:403–406.

    Article  CAS  Google Scholar 

  • Nelson MJK, Montgomery SO, O’Neill EJ, Pritchard PH. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl Environ Microbiol 52:383–384.

    CAS  Google Scholar 

  • Odum JM, Tabinowski J, Lee MD, Fathepure BZ. 1995. Anaerobic biodegradation of chlorinated solvents: Comparative laboratory study of aquifer microcosms. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 17–24.

    Google Scholar 

  • Phelps TJ, Malachowsky K, Schram RM, White DC. 1991. Aerobic mineralization of vinyl chloride by a bacterium of the order Actinomycetales. Appl Environ Microbiol 57:1252–1254.

    CAS  Google Scholar 

  • Reij MW, Kieboom J, de Bont JAM, Hartmans S. 1995. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene. Appl Environ Microbiol 61:2936–2942.

    CAS  Google Scholar 

  • Rosner BM, McCarty PL, Spormann AM. 1997. In vitro studies of reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63:4139–4144.

    CAS  Google Scholar 

  • Ryoo D, Shim H, Canada K, Barbieri P, Wood TK. 2000. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Psuedomonas stutzeri OX1. Nat Biotechnol 18:775–778.

    Article  CAS  Google Scholar 

  • Schink B. 1984. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch Microbiol 137:250–255.

    Article  CAS  Google Scholar 

  • Schink B. 1994. Diversity, ecology and isolation of acetogenic bacteria. In Drake HL, ed, Acetogenesis. Chapman & Hall, New York, NY, USA, pp 197–235

    Chapter  Google Scholar 

  • Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E, Diekert G. 1995. Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tertrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163:48–56.

    Article  CAS  Google Scholar 

  • Semprini L. 1995. In situ bioremediation of chlorinated solvents. Environ Health Perspectives 103:101–105.

    CAS  Google Scholar 

  • Sharma PK, McCarty PL. 1996. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol 62:761–765.

    CAS  Google Scholar 

  • Shelton DR, Tiedje JM. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48:840–848.

    CAS  Google Scholar 

  • Shim H, Ryoo D, Barbieri P, Wood TK. 2001. Aerobic degradation of mixtures of tetrachlorethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Psuedomonas stutzeri OX1. Appl Microbiol Biotechnol 56:265–269.

    Article  CAS  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH. 1996. Comparative kinetic of hydrogen utilization for reductive dechlorination of tetrachlorethene and methanogenesis in an enrichment culture. Environ Sci Technol 30:2850–2858.

    Article  CAS  Google Scholar 

  • Sorenson KS, Peterson LN, Hinchee RE, Ely RL. 2000. An evaluation of aerobic trichloroethene attenuation using first-order rate estimation. Bioremediation J 4:337–357.

    Article  CAS  Google Scholar 

  • Terzenbach DP, Blaut M. 1994. Transformation of tetrachlorethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett 123:213–218.

    Article  CAS  Google Scholar 

  • Townsend GT, Suflita JM. 1997. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl Environ Microbiol 63:3594–3599.

    CAS  Google Scholar 

  • Tsien HC, Brusseau GA, Hanson RS, Wackett LP. 1989. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol 55:3155–3161.

    CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1997. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. USEPA Office of Solid Waste and Emergency Response Directive 9200.4-17. USEPA, Washington, DC, USA.

    Google Scholar 

  • Vannelli T, Logan M, Arciero DM, Hooper AB. 1990. Degradation of halogenated aliphatic compounds by the ammonium-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol 56:1169–1171.

    CAS  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL. 2000. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol 66:3535–3542.

    Article  CAS  Google Scholar 

  • Verce MF, Ulrich RL, Freedman DL. 2001. Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene. Environ Sci Technol 35:4242–4251.

    Article  CAS  Google Scholar 

  • Verce MF, Gunsch CK, Danko AS, Freedman DL. 2002. Cometabolism of cis-1,2-dichlorethene by aerobic cultures grown on vinyl chloride as the primary substrate. Environ Sci Technol 36: 2171–2177.

    Article  CAS  Google Scholar 

  • Vogel TM. 1994. Natural bioremediation of chlorinated solvents. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 201–225

    Google Scholar 

  • Vogel TM, McCarty PL. 1985. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49:1080–1083.

    CAS  Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL. 1987. Transformation of halogenated aliphatic compounds. Environ. Sci Technol 21:722–736.

    Article  CAS  Google Scholar 

  • Weaver JW, Wilson JT, Kampbell DH. 1996. Extraction of degradation rate constants from the St. Joseph, Michigan, trichloroethene site. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. USEPA, Washington, DC, USA, pp 69–73.

    Google Scholar 

  • Wiedemeier TH, Wilson JT, Kampbell DH. 1996. Natural attenuation of chlorinated aliphatic hydrocarbons at Plattsburg Air Force Base, New York. Proceedings, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, EPA/540/R-96/509. USEPA, Washington, DC, USA, pp 74–82.

    Google Scholar 

  • Wiedemeier TH, Swanson MA, Moutoux DE, Gordon EK, Wilson JT, Wilson BH, Kampbell DH, Haas PE, Miller RN, Hansen JE, Chapelle FH. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. USEPA, Washington DC, USA.

    Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ, Wilson JT. 1999. Intrinsic bioremediation of chlorinated contaminants. In Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley and Sons, New York, NY, USA, pp 241–297.

    Book  Google Scholar 

  • Wild A, Herman R, Leisinger T. 1996. Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation J 7:507–511.

    Article  CAS  Google Scholar 

  • Wilson JT, Wilson BH. 1985. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol 49:242–243.

    CAS  Google Scholar 

  • Wilson JT, Kampbell DH, Weaver JW, Imbrigiotta T, Ehlke T. 1995. A review of intrinsic bioremediation of trichloroethylene in ground water at Picatinny Arsenal, New Jersey, and St. Joseph, Michigan. Proceedings, Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, EPA/540/R-95/53, pp 13–16.

    Google Scholar 

  • Wu WM, Nye J, Hickey RF, Jain MK, Zeikus JG. 1995. Dechlorination of PCE and TCE to ethene using an anaerobic microbial consortium. In Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden RC, Vogel TM, Thomas JM, Ward CH, eds, Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL, USA, pp 45–52.

    Google Scholar 

  • Yang Y, McCarty PL. 1998. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 32:3591–3597.

    Article  CAS  Google Scholar 

  • Yang Y, McCarty PL. 1999. Response to comment on: Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ Sci Technol 33:2128–2128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bradley, P.M., Chapelle, F.H. (2010). Biodegradation of Chlorinated Ethenes. In: Stroo, H., Ward, C. (eds) In Situ Remediation of Chlorinated Solvent Plumes. SERDP/ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1401-9_3

Download citation

Publish with us

Policies and ethics