Skip to main content

The Function of Oligomerization-Incompetent RDS in Rods

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

The photoreceptor-specific tetraspanin glycoprotein RDS (retinal degeneration slow) is associated with many forms of inherited retinal disease. RDS shares features in common with other tetraspanin proteins, including the existence of a large intradiscal D2 loop containing several cysteines. While these cysteines are used only for intramolecular disulfide bonds in most tetraspanins, RDS expresses a seventh, unpaired cysteine (C150) used for intermolecular disulfide bonding in the formation of large RDS oligomers. To study oligomerization-dependent vs. oligomerization-independent RDS functions in rods, we generated a transgenic mouse line harboring a point mutation that replaces this Cys with Ser (C150S), leading to the expression of an RDS protein that cannot form intermolecular disulfide bonds. The mouse opsin promoter (MOP) was used to direct C150S RDS expression specifically in rods in these transgenic mice (MOP-T). Here we report improvement in scotopic ERGs in MOP-T/rds +/– mice (compared to non-transgenic rds +/– controls) and the appearance of malformed outer segments (OSs) in MOP-T mice that do not express native RDS (MOP-T/rds –/–). These results suggest that while normal OS structure and function require RDS oligomerization, some RDS function is retained in the absence of C150. Since one of the functions of other tetraspanin proteins is to promote assembly of a membrane microdomain known as the “tetraspanin web”, future studies may investigate whether assembly of this web is one of RDS’s oligomerization-independent functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arikawa K, Molday LL, Molday RS et al (1992) Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. J Cell Biol 116:659–667

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty D, Ding XQ, Conley SM et al (2008a) Differential requirements for Rds intermolecular disulfide-linked oligomerization in rods versus cones. Hum Mol Genet 18:797–808

    PubMed  Google Scholar 

  • Chakraborty D, Ding XQ, Fliesler SJ et al (2008b) Outer segment oligomerization of Rds: evidence from mouse models and subcellular fractionation. Biochemistry 47:1144–1156

    Article  CAS  PubMed  Google Scholar 

  • Connell GJ, Molday RS (1990) Molecular cloning, primary structure, and orientation of the vertebrate photoreceptor cell protein peripherin in the rod outer segment disk membrane. Biochemistry 29:4691–4698

    Article  CAS  PubMed  Google Scholar 

  • Delaguillaumie A, Lagaudriere-Gesbert C, Popoff MR et al (2002) Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J Cell Sci 115:433–443

    CAS  PubMed  Google Scholar 

  • Farjo R, Naash MI (2006) The role of rds in outer segment morphogenesis and human retinal disease. Ophthalmic Genet 27:117–122

    Article  PubMed  Google Scholar 

  • Goldberg AF, Loewen CJ, Molday RS (1998) Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. Biochemistry 37: 680–685

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1107

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  CAS  PubMed  Google Scholar 

  • Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C et al (1998) Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol 28:4332–4344

    Article  CAS  PubMed  Google Scholar 

  • Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    Article  CAS  PubMed  Google Scholar 

  • Li C, Ding XQ, O’Brien J et al (2003) Molecular characterization of the skate peripherin/rds gene: relationship to its orthologues and paralogues. Invest Ophthalmol Vis Sci 44:2433–2441

    Article  PubMed  Google Scholar 

  • Loewen CJ, Molday RS (2000) Disulfide-mediated oligomerization of Peripherin/Rds and Rom-1 in photoreceptor disk membranes. Implications for photoreceptor outer segment morphogenesis and degeneration. J Biol Chem 275:5370–5378

    Article  CAS  PubMed  Google Scholar 

  • Loewen CJ, Moritz OL, Tam BM et al (2003) The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa. Mol Biol Cell 14:3400–3413

    Article  CAS  PubMed  Google Scholar 

  • Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61

    CAS  PubMed  Google Scholar 

  • Moritz OL, Peck A, Tam BM (2002) Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones. Gene 298:173–182

    Article  CAS  PubMed  Google Scholar 

  • Naash MI, Ding XQ, Li C et al (2003) Peripherin/rds in skate retina. Adv Exp Med Biol 533:377–383

    CAS  PubMed  Google Scholar 

  • Serru V, Le Naour F, Billard M et al (1999) Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340(Pt 1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Shigeta M, Sanzen N, Ozawa M et al (2003) CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 163:165–176

    Article  CAS  PubMed  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112

    Article  CAS  PubMed  Google Scholar 

  • Travis GH, Sutcliffe JG, Bok D (1991) The retinal degeneration slow (rds) gene product is a photoreceptor disc membrane-associated glycoprotein. Neuron 6:61–70

    Article  CAS  PubMed  Google Scholar 

  • Wrigley JD, Ahmed T, Nevett CL et al (2000) Peripherin/rds influences membrane vesicle morphology. Implications for retinopathies. J Biol Chem 275:13191–13194

    Article  CAS  PubMed  Google Scholar 

  • Wu XR, Medina JJ, Sun TT (1995) Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. J Biol Chem 270:29752–29759

    Article  CAS  PubMed  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB et al (1998) Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The monoclonal antibodies for this study (1D4) were generously shared with us by Dr. Robert Molday, University of British Columbia. The authors would like to thank Rasha Makkia for her excellent technical assistance with the transgenic animals. This study was supported by grants from the National Institutes of Health (EY10609 & EY018656 to MIN; EY007361 to SJF; Core Grant for Vision Research EY12190 to MIN), the Foundation Fighting Blindness (MIN), the Knights Templar Eye Research Foundation (DC) and a departmental Unrestricted Grant from Research to Prevent Blindness (SJF). Dr. Naash is the recipient of a Research to Prevent Blindness James S. Adams Scholar Award. Dr. Fliesler is the recipient of a Research to Prevent Blindness Senior Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna I. Naash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chakraborty, D., Conley, S.M., Fliesler, S.J., Naash, M.I. (2010). The Function of Oligomerization-Incompetent RDS in Rods. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_5

Download citation

Publish with us

Policies and ethics