Skip to main content

Neuropsychological Problems in Neuro-oncology

  • Chapter
  • First Online:
Handbook of Medical Neuropsychology

Abstract

Neuropsychological studies in the field of oncology are related to neuro-oncology: (1) brain tumors – which arise from neurons and other brain tissues, cranial nerves, leptomeninges, neuroendocrine glands, skull, and blood vessels and (2) treatment effects. The neurocognitive effects of brain tumors themselves are variable and require close examination of the cognitive underpinnings of composite test scores. Other cases present fascinating modular deficits when tumors occur in eloquent brain loci. After providing basic biomedical background on tumors in children and adults, the questions of tumor site and metastatic spread as well as treatment effects on brain and cognitive and emotional function will be examined in this chapter. Information will also be presented on the techniques for diagnosing and treating tumors and on issues to be considered in doing research in neuro-oncology. Finally, this chapter will discuss how disorders and syndromes that result from brain tumors and their treatments differ from more classical or traditionally understood forms of the disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The grading system used in the 2007 classification uses the numbers following the tumor group to indicate whether they are malignant (3), borderline or uncertain (1), or benign (0).

  2. 2.

    Cerebellar mutism is an acquired complete loss of speech, transient in nature, most often following surgical resection of cerebellar or intrinsic posterior fossa tumors or following stroke or trauma. It is an element of the posterior fossa syndrome, but can occur alone. Resolution of the mutism typically occurs within days, but has been reported to take up to 4 months, and is followed by dysarthria that improves over time and more subtle present linguistic disorders [7983].

References

  1. Jarquin-Valdivia AA. Psychiatric symptoms and brain tumors: a brief historical overview. Arch Neurol. 2004;61:1800–04.

    Article  PubMed  Google Scholar 

  2. Fisher M, Phillips P. PET imaging of brain tumors. In: Charron M, editor. Practical pediatric PET imaging. New York, NY: Springer; 2006. pp. 175–219.

    Google Scholar 

  3. Simpson JR, Scott CB, Rotman M, et al. Race and prognosis of brain tumor patients entering multicenter clinical trials. Am J Clin Oncol (CCT). 1996;19:114–20.

    Article  Google Scholar 

  4. Louis DN, Cavenee WK. Molecular biology of central nervous system tumors. Boston, MA: Massachusetts General Hospital, MGH Neurosurgical Service, Brain Tumor Center, 2005:http://brain.mgh.harvard.edu/MolecularGenetics.htm

  5. Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu Rev Neurosci. 2001;24:385–428.

    Article  PubMed  Google Scholar 

  6. Filley CM, Kleinschmidt-DeMasters BK, Lillehei KO, et al. Gliomatosis cerebri: neurobehavioral and neuropathological observations. Cogn Behav Neurol. 2003;16:149–59.

    Article  PubMed  Google Scholar 

  7. Wen PY, Loeffler JS. Management of brain metastases. Oncology. 1999;13:941–54; 957–61.

    Google Scholar 

  8. Posner J. Management of brain metastases. Rev Neurol. 1992;148:477–87.

    PubMed  Google Scholar 

  9. Armstrong CL. Neurofibromatosis type 1. In: Kreutzer J, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York, NY: Springer; 2010.

    Google Scholar 

  10. Armstrong CL. Neurofibromatosis type 2. In: Kreutzer J, DeLuca J, Caplan B, editors. Encyclopedia of clinical neuropsychology. New York, NY: Springer; 2010.

    Google Scholar 

  11. Zoller ME, Rembeck B, Backman L. Neuropsychological deficits in adults with neurofibromatosis type 1. Acta Neurol Scand. 1997;95:225–32.

    Article  PubMed  Google Scholar 

  12. Moore BD, Denckla MB. Neurofibromatosis. In: Yeates KO, Ris MD, Taylor HG, editors. Pediatric neuropsychology: research, theory and practice. New York, NY: The Guilford Press; 2000.

    Google Scholar 

  13. Rosser TL, Packer RJ. Neurocognitive dysfunction in children with neurofibromatosis type 1. Curr Neurol Neurosci Rep. 2003;3:129–36.

    Article  PubMed  Google Scholar 

  14. Barton B, North K. Social skills of children with neurofibromatosis type 1. Dev Med Child Neurol. 2004;46:553–63.

    Article  PubMed  Google Scholar 

  15. Mautner VF, Kluwe L, Thakker SD, Leark RA. Treatment of ADHD in neurofibromatosis type 1. Dev Med Child Neurol. 2002;44:164–70.

    Article  PubMed  Google Scholar 

  16. Krab LC, Aarsen FK, de Goede-Bolder A, et al. Impact of neurofibromatosis type 1 on school performance. J Child Neurol. 2008;23:1002–20.

    PubMed  Google Scholar 

  17. Hyman SL, Gill DS, Shores EA, et al. Natural history of cognitive deficits and their relationship to MRI T2-hyperintensities in NF1. Neurology. 2003;60: 1139–45.

    Article  PubMed  Google Scholar 

  18. Hyman SL, Shores EA, North KN. Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol. 2006;48:973–7.

    Article  PubMed  Google Scholar 

  19. Dalmau J, Gultekin HD, Posner J. Paraneoplastic neurologic syndromes: pathogenesis and physiopathology. Brain Pathol. 1999;9:275–84.

    Article  PubMed  Google Scholar 

  20. Honnorat J, Cartalat-Carel S, Ricard D, et al. Onco-neural antibodies and tumour type determine survival and neurological syndromes in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatr. 2009;80:412–6.

    Article  PubMed  Google Scholar 

  21. Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59:490–8.

    Article  PubMed  Google Scholar 

  22. Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA. 2002;99:13571–6.

    Article  PubMed  Google Scholar 

  23. Inskip PD, Heineman EL. New malignancies following cancer of the brain and central nervous system. In: (SEER) SEaER, ed. Brain and Other CNS, 2008: 363–373

    Google Scholar 

  24. Paulino AC, Mai WY, Chintagumpala M, et al. Radiation-induced malignant gliomas: is there a role for reirradiation?. Int J Rad Onc Bio Phys. 2008;71:1381–7.

    Article  Google Scholar 

  25. Thierry-Chef I, Simon SL, Land CE, Miller DL. Radiation dose to the brain and subsequent risk of developing brain tumors in pediatric patients undergoing interventional neuroradiology procedures. Radiat Res. 2008;170:553–65.

    Article  PubMed  Google Scholar 

  26. Zacharatou JC, Paganetti H. Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age. Int J Rad Onc Bio Phys. 2008;72:228–35.

    Article  Google Scholar 

  27. NRC NRCUS. Radiation-induced cancer: mechanisms, quantitative experimental studies, and the role of genetic factors. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: National Academies Press; 2006

    Google Scholar 

  28. Preston-Martin S, Mack W, Henderson BE. Risk factors for gliomas and meningiomas in males in Los Angeles County. Cancer Res. 1989;49:6137–43.

    PubMed  Google Scholar 

  29. Wrensch M, Minn Y, Chew T, et al. Epidemiology of primary brain tumors: current concepts and review of the literature. Neurooncology. 2002;4:278–99.

    Google Scholar 

  30. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  Google Scholar 

  31. American Joint Commission on Cancer. AJCC cancer staging manual. 6th ed. New York, NY: Springer; 2002.

    Google Scholar 

  32. Kayl AE, Meyers CA. Does brain tumor histology influence cognitive function? Neurooncology. 2003;5: 255–60.

    Google Scholar 

  33. Bosma I, Douw L, Bartolomei F, et al. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study. Neurooncology. 2008;10:734–44.

    Google Scholar 

  34. Sands S, Van Gorp W, Finlay J. A dramatic loss of non-verbal intelligence following a right parietal ependymoma: a brief case report. Psycho Oncol. 2000;9: 259–66.

    Article  Google Scholar 

  35. Sahadevan S, Pang WS, Tan NJL, et al. Neuroimaging guidelines in cognitive impairment: lessons from 3 cases of meningiomas presented as isolated dementia. Singapore Med J. 1997;38:339–43.

    PubMed  Google Scholar 

  36. Skirboll SS, Ojemann GA, Berger MS, et al. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38:678–85.

    Article  PubMed  Google Scholar 

  37. Anderson S, Damasio H, Tranel D. Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol. 1990;47:397–405.

    Article  PubMed  Google Scholar 

  38. Scheibel R, Meyers C, Levin V. Cognitive dysfunction following surgery for intracerebral glioma: influence of histopathology, lesion location and treatment. J Neurooncol. 1996;30:61–9.

    Article  PubMed  Google Scholar 

  39. Riva D, Giorgi D. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.

    Article  PubMed  Google Scholar 

  40. Goldstein B, Obrzut JE, John C, Hunter JV, Armstrong CL. The impact of low-grade brain tumors on verbal fluency performance. J Clin Exp Neuropsychol. 2004;26:750–8.

    Article  PubMed  Google Scholar 

  41. Gourovitch ML, Kirkby BS, Goldberg TE, et al. A comparison of rCBF patterns during letter and semantic fluency. J Int Neuropsychol Soc. 2000;14:353–60.

    Google Scholar 

  42. Stuss DT, Alexander MP, Hamer L, et al. The effects of focal anterior and posterior brain lesions on verbal fluency. J Int Neuropsychol Soc. 1998;4:265–78.

    PubMed  Google Scholar 

  43. Goldstein B, Obrzut JE, John D, Ledakis G, Armstrong CL. The impact of frontal and non-frontal brain tumor lesions on Wisconsin card sorting test performance. Brain Cogn. 2004;54:110–6.

    Article  PubMed  Google Scholar 

  44. Goldstein B, Armstrong CL, Modestino E, et al. Picture and word recognition memory in adult intracranial tumor patients. Brain Cogn. 2004;54:1–6.

    Article  PubMed  Google Scholar 

  45. Snodgrass JG, Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn. 1980;6:174–215.

    Article  PubMed  Google Scholar 

  46. Goldstein B, Armstrong CL, John C. Neuropsychological effects of intracranial tumors on attention. J Clin Exp Neuropsychol. 2003;25:66–78.

    Article  PubMed  Google Scholar 

  47. Tulving E, Kapur S, Craik F, et al. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci. 1994;91:2016–20.

    Article  PubMed  Google Scholar 

  48. Meyers C, Hess K, Yung W, Levin V. Cognitive function as a predictor of survival in patients with recurrent malignant glioma. J Clin Oncol. 2000;18:646–50.

    PubMed  Google Scholar 

  49. Armstrong CL, Goldstein B, Shera D, et al. The predictive value of longitudinal neuropsychological assessment in the early detection of brain tumor recurrence. Cancer. 2003;97:649–56.

    Article  PubMed  Google Scholar 

  50. Armstrong CL, Hunter JV, Ledakis GE, et al. Late cognitive and radiographic changes related to radiotherapy: initial prospective findings. Neurology. 2002;59:40–8.

    Article  PubMed  Google Scholar 

  51. Newport DJ, Nemeroff CB. Assessment and treatment of depression in the cancer patient. J Psychosom Res. 1998;45:215–37.

    Article  PubMed  Google Scholar 

  52. Pringle AM, Taylor R, Whittle IR. Anxiety and depression in patients with an intracranial neoplasm before and after tumour surgery. Br J Neurosurg. 1999;13:46–51.

    Article  PubMed  Google Scholar 

  53. Giovagnoli AR. Quality of life in patients with stable disease after surgery, radiotherapy, and chemotherapy for malignant brain tumour. J Neurol Neurosurg Psychiatr. 1999;67:358–63.

    Article  PubMed  Google Scholar 

  54. Radcliffe J, Bennett D, Kazak AE, et al. Adjustment in childhood brain tumor survival: child, mother, and teacher report. J Pediatr Psychol. 1996;21:529–39.

    Article  PubMed  Google Scholar 

  55. Suzuki R, Hirao M, Miyo T, et al. Changes in QOL in patients with brain tumors measured by mood changes during and after treatment. No Shinkei Geka. 1998;26:795–801.

    PubMed  Google Scholar 

  56. Osteraker A-L, Kihlgren M, Melin L. Long-term psychosocial consequences for families with children treated for brain-tumor and other malignancies. J Int Neuropsychol Soc. 1999;5:108.

    Google Scholar 

  57. Armstrong C, Goldstein B, Cohen B, et al. Clinical predictors of depression in patients with low-grade brain tumors: consideration of a neurologic versus a psychogenic model. J Clin Psychol Med Settings. 2002;9:97–107.

    Article  Google Scholar 

  58. Weitzner M, Meyers C, Byrne K. Psychosocial functioning and quality of life in patients with primary brain tumors. J Neurosurg. 1996;84:29–34.

    Article  PubMed  Google Scholar 

  59. Kaplan CP, Miner ME. Relationships: importance for patients with cerebral tumours. Brain Inj. 2000;14:251–9.

    Article  PubMed  Google Scholar 

  60. Irle E, Peper M, Wowra B, Kunze S. Mood changes after surgery for tumors of the cerebral cortex. Arch Neurol. 1994;51:164–74.

    Article  PubMed  Google Scholar 

  61. Wellisch DK, Kaleita TA, Freeman D, et al. Predicting major depression in brain tumor patients. Psychooncology. 2002;11:230–8.

    Article  PubMed  Google Scholar 

  62. Habermeyer B, Weiland M, Mager R, et al. A clinical lesson: Glioblastoma multiforme masquerading as depression in a chronic alcoholic. Alcohol Alcohol. 2008;43:31–3.

    PubMed  Google Scholar 

  63. Butler JM Jr., Case LD, Atkins J, et al. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation. Int J Rad Oncol Biol Phys. 2007;69:1496–501.

    Article  Google Scholar 

  64. Thompson SJ, Leigh L, Christensen R, et al. Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J Clin Oncol. 2001;19:1802–08.

    PubMed  Google Scholar 

  65. Mulhern RK, Khan RB, Kaplan S, et al. Short-term efficacy of methylphenidate: a randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. J Clin Oncol. 2005;22:4795–803.

    Article  Google Scholar 

  66. Kaleita TA, Wellisch DK, Graham CA, et al. Pilot study of modafinil for treatment of neurobehavioral dysfunction and fatigue in adult patients with brain tumors. J Clin Oncol. 2006;24:1503.

    Google Scholar 

  67. Kohli S, Fisher SG, Tra Y, et al. The effect of modafinil on cognitive function in breast cancer survivors. Cancer. 2009;115:2605–16.

    Article  PubMed  Google Scholar 

  68. Redd WH, Silberfarb PM, Andersen BL, et al. Physiologic and psychobehavioral research in oncology. Cancer. 1991;67:813–22.

    Article  PubMed  Google Scholar 

  69. Mulhern R, Crisco J, Kun L. Neuropsychological sequelae of childhood brain tumors: a review. J Clin Child Psychol. 1983;12:66–73.

    Article  Google Scholar 

  70. Kazak AE, Barakat LP, Meeske K, et al. Posttraumatic stress, family functioning, and social support in survivors of childhood leukemia and their mothers and fathers. J Consult Clin Psychol. 1997;65:120–9.

    Article  PubMed  Google Scholar 

  71. Pelcovitz D, Libov BG, Mandel F, et al. Posttraumatic stress disorder and family functioning in adolescent cancer. J Trauma Stress. 1998;11:205–21.

    Article  PubMed  Google Scholar 

  72. Libov BG, Nevid JS, Pelcovitz D, Carmony TM. Posttraumatic stress symptomatology in mothers of pediatric cancer survivors. Psychol Health. 2002;17:501–511.

    Article  Google Scholar 

  73. Birmaher B, Brent D, Chiappetta L, et al. Psychometric properties of the screen for child anxiety related emotional disorders (SCARED): a replication study. J Am Acad Child Adolesc Psychiatry. 1999;38:545–53.

    Article  Google Scholar 

  74. Moitra E, Armstrong CL. Tumor locus moderates anxiety symptoms in a pediatric neuro-oncologic sample. Child Neuropsychol. 2009;15:460.

    Article  PubMed  Google Scholar 

  75. Williams PG, Hersh JH. Brief report: the association of neurofibromatosis type 1 and autism. J Autism Dev Disord. 1998;28:567–71.

    Article  PubMed  Google Scholar 

  76. Mouridsen SE, Andersen LB, Sorensen SA, et al. Neurofibromatosis in infantile autism and other types of childhood psychoses. Acta Paedopsychiatr. 1992;55:15–8.

    PubMed  Google Scholar 

  77. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiat Clin Neurosci. 2004;16:367–78.

    Article  Google Scholar 

  78. Schmahmann JD. Therapeutic and research implications. Int Rev Neurobiol. 1997;41:637–47.

    Article  PubMed  Google Scholar 

  79. VanDeinse D, Hornyak J. Linguistic and cognitive deficits associated with cerebellar mutism. Pediatr Rehabil. 1997;1:41–4.

    PubMed  Google Scholar 

  80. Pollack IF, Polinko P, Albright AL, et al. Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery. 1995;37:885–93.

    Article  PubMed  Google Scholar 

  81. Ferrante L, Mastronardi L, Acqui M, Fortuna A. Mutism after posterior fossa surgery in children. J Neurosurg. 1990;72:959–63.

    Article  PubMed  Google Scholar 

  82. Ersahin Y, Mutluer S, Caglil S, Duman Y. Cerebellar mutism: report of seven cases and review of the literature. Neurosurgery. 1996;38:60–66.

    Article  PubMed  Google Scholar 

  83. Miyakita Y, Taguchi Y, Sakakibara Y, et al. Transient mutism resolving into cerebellar speech after brain stem infarction following a traumatic injury of the vertebral artery in a child. Acta Neurochir. 1999;141:209–13.

    Article  Google Scholar 

  84. Tavano A, Grasso R, Gagliardi C, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    Article  PubMed  Google Scholar 

  85. Mainio A, Hakko H, Niemelä A, et al. Level of obsessionality among neurosurgical patients with a primary brain tumor. J Neuropsychiat Clin Neurosci. 2005;17:399–404.

    Article  Google Scholar 

  86. Price TRP, Goetz KL, Lovell MR. Neuropsychiatric aspects of brain tumors. In: Yudofsky SC, Hales RE, editors. Essentials of neuropsychiatry and clinical neurosciences. Arlington, VA: American Psychiatric Publishing, Inc.; 2004. pp. 373–98.

    Google Scholar 

  87. Weissenberger AA, Dell ML, Liow K, et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2001;40:696–703.

    Article  PubMed  Google Scholar 

  88. Merchant TE, Hua CH, Shukla H, et al. Proton versus photon radiotherapy for common pediatric brain tumors: comparison of models of dose characteristics and their relationship to cognitive dysfunction. Pediatr Blood Cancer. 2008;51:110–7.

    Article  PubMed  Google Scholar 

  89. Klein M, Heimans J, Aaronson N, et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002;360:1361–8.

    Article  PubMed  Google Scholar 

  90. Armstrong C, Corn B, Ruffer J, et al. Radiotherapeutic effects on brain function: double dissociation of memory systems. Neuropsychiatry Neuropsychol Behav Neurol. 2000;13:101–11.

    PubMed  Google Scholar 

  91. Armstrong C, Ruffer J, Corn B, et al. Biphasic patterns of memory deficits following moderate dose/partial brain irradiation: neuropsychologic outcome and proposed mechanisms. J Clin Oncol. 1995;13:2263–71.

    PubMed  Google Scholar 

  92. Lee P, Hung B, Woo E, et al. Effects of radiation therapy on neuropsychological functioning in patients with nasopharyngeal carcinoma. J Neurol Neurosurg Psychiat. 1989;52:488–92.

    Article  PubMed  Google Scholar 

  93. Reimers TS, Mortensen EL, Schmiegelow K. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions. Pediatr Blood Cancer. 2007;48:205–12.

    Article  PubMed  Google Scholar 

  94. Llanes S, Torres IJ, Roeske A, et al. Temporal lobe radiation and memory in adult brain tumor patients. J Int Neuropsychol Soc. 2004;10(S1):185.

    Google Scholar 

  95. Armstrong C, Stern C, Ruffer J, Corn B. Memory performance used to detect radiation effects on cognitive functioning. Appl Neuropsychol. 2001;8:129–39.

    Article  PubMed  Google Scholar 

  96. Mulhern R, Palmer S, Merchant TE, et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol. 2005;23:5511–9.

    Article  PubMed  Google Scholar 

  97. Palmer S, Gajjar A, Reddick W, et al. Predicting intellectual outcome among children treated with 35–40 Gy craniospinal irradiation for medulloblastoma. Neuropsychology. 2003;17:548–55.

    Article  PubMed  Google Scholar 

  98. Palmer S, Reddick W, Glass J, et al. Decline in corpus callosum volume among pediatric patients with medulloblastoma: longitudinal MR imaging study. Am J Neuroradiol. 2002;23:1088–94.

    PubMed  Google Scholar 

  99. Mulhern R, Palmer S, Reddick W, et al. Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. J Clin Oncol. 2001;19:472–9.

    PubMed  Google Scholar 

  100. Shaw EG, Rosdhal R, D‘Agostino RBJ, et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24:1415–20.

    Article  PubMed  Google Scholar 

  101. Armstrong C, Gyato K, Awadalla A, et al. A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev. 2004;14:65–86.

    Article  PubMed  Google Scholar 

  102. Welzel G, Fleckenstein K, Mai SK, et al. Acute neurocognitive impairment during cranial radiation therapy in patients with intracranial tumors. Strahlenther Onkol. 2008;184:647–54.

    Article  PubMed  Google Scholar 

  103. Merchant TE, Kiehna EN, Miles MA, et al. Acute effects of irradiation on cognition: changes in attention on a computerized continuous performance test during radiotherapy in pediatric patients with localized primary brain tumors. Int J Rad Onc Biol Phys. 2002;53:1271–8.

    Article  Google Scholar 

  104. Berg R, Ch’ien L, Lancaster W, et al. Neuropsychological sequelae of postradiation somnolence syndrome. Dev Behav Pediatr. 1983;4:103–07.

    Article  Google Scholar 

  105. Armstrong CL, Guglielmi L, Seiler CB. Early delayed radiotherapy damage affects widespread semantic memory networks. J Int Neuropsychol Soc (abstr.). 2004;10(S1):97–8.

    Google Scholar 

  106. Mettler F, Upton A. Medical effects of ionizing radiation. 2nd ed. Philadelphia, PA: W.B. Saunders; 1995.

    Google Scholar 

  107. Viner K. Cognitive changes in response to treatment of brain tumors: the late-delayed effects of radiation therapy. (Psy.D. Dissertation). Chester, PA: Widener University; 2008.

    Google Scholar 

  108. Bleyer A, Geyer J, Taylor E, Hubbard B. The susceptibility of the cerebral subependymal zone (SEZ) to chemotherapy (CT) and radiotherapy (RT): mechanism of clinical neurotoxicity caused by CT and RT (Abstr.). Proc Am Soc Clin Oncol. 1989;8:84.

    Google Scholar 

  109. Monje ML, Mizumatsu S, Fike S, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002;8:955–62.

    Article  PubMed  Google Scholar 

  110. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003;16:129–34.

    Article  PubMed  Google Scholar 

  111. Shaw EG, Robbins ME. Biological bases of radiation injury to the brain. In: Meyers CA, Perry JR, editors. Cognition and cancer. Cambridge, UK: Cambridge University Press; 2008. pp. 83–96.

    Chapter  Google Scholar 

  112. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302:1760–65.

    Article  PubMed  Google Scholar 

  113. Armstrong CL, Hunter JV, Hackney D, et al. MRI changes during the early-delayed phase of radiotherapy effects. Int J Rad Oncol Biol Phys. 2005;63:56–63.

    Article  Google Scholar 

  114. Nagel BJ, Palmer SL, Reddick WE, et al. Abnormal hippocampal development in children with medulloblastoma treated with risk-adapted irradiation. Am J Neuroradiol. 2004;25:1575–82.

    PubMed  Google Scholar 

  115. Armstrong CL, Hampstead B, Guglielmi L. Hippocampal response to neuro-oncological stressors [abstract]. J Int Neuropsychol Soc. 2004;10(S1):65.

    Google Scholar 

  116. Cao Y, Tsien CI, Sundgren PC, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clin Cancer Res. 2009;15:1747–54.

    Article  PubMed  Google Scholar 

  117. Hahn CA, Zhou SM, Raynor R, et al. Dose-dependent effects of radiation therapy on cerebral blood flow, metabolism, and neurocognitive dysfunction. Int J Rad Oncol Biol Phys. 2009;73:1082–7.

    Article  Google Scholar 

  118. Sato K, Kameyama M, Kayama T, et al. Serial positron emission tomography imaging of changes in amino acid metabolism in low grade astrocytoma after radio- and chemotherapy. Neurol Med Chir (Tokyo). 1995;35:808–12.

    Article  Google Scholar 

  119. Walter A, Mulhern R, Grajjar A, et al. Survival and neurodevelopmental outcome of young children with medulloblastoma at St. Jude Children’s Research Hospital. J Clin Oncol. 1999;17:3720–8.

    PubMed  Google Scholar 

  120. Radcliffe J, Bunin G, Sutton L, et al. Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: age-dependent effects of whole brain radiation. Int J Dev Neurosci. 1994;12:327–34.

    Article  PubMed  Google Scholar 

  121. Blowers E, Hall K. Adverse events in bevacizumab and chemotherapy: patient management. Br J Nurs. 2009;18:424–8.

    PubMed  Google Scholar 

  122. Shiminski-Maher T, Cullen P, Sansalone M. Childhood brain and spinal cord tumors: a guide for families, friends, and caregivers. Sebastopol, CA: O‘Reilly and Associates; 2002.

    Google Scholar 

  123. Fischer D, Knobf MT. The cancer chemotherapy handbook. St. Louis, MO: Mosby Year Book; 1989.

    Google Scholar 

  124. Erbetta A, Salmaggi A, Sghirlanzoni A, et al. Clinical and radiological features of brain neurotoxicity caused by antitumor and immunosuppressant treatments. Neurol Sci. 2008;29:131–7.

    Article  PubMed  Google Scholar 

  125. Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol. 2006;111:197–212.

    Article  PubMed  Google Scholar 

  126. Meyers CA. How chemotherapy damages the nervous system. J Biol. 2008;7:II.

    Article  Google Scholar 

Download references

Acknowledgments

The research from the neuropsychological laboratory at the University of Pennsylvania and the Children’s Hospital of Philadelphia was funded by Dr. Carol Armstrong’s grant from the National Cancer Institute, #RO1 CA 65438.

Many thanks to Mark Goodman for his invaluable editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Armstrong, C.L., Schmus, C.J., Belasco, J.B. (2010). Neuropsychological Problems in Neuro-oncology. In: Armstrong, C., Morrow, L. (eds) Handbook of Medical Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1364-7_3

Download citation

Publish with us

Policies and ethics