Skip to main content

Peptide Foldamers: From Spectroscopic Studies to Applications

  • Chapter
Book cover Reviews in Fluorescence 2008

Abstract

Peptide foldamers are synthetic oligopeptides which attain a few, specific, constrained conformations in solution. Here, we review our contributions to the study of the structural features of several foldamers, comprising Cα-tetrasubstituted aminoacids, by spectroscopic techniques and, in particular, by a combined approach employing time-resolved energy transfer (FRET) experiments and molecular modeling to determine interprobe distances and orientations. Our data show that, for rigid systems, the commonly used assumption of random orientation of donor and acceptor is unjustified, and that in these cases a correct evaluation of the orientation factor is mandatory for meaningful structural determinations. Finally, we illustrate some applications of peptide foldamers in studies on the kinetics of protein folding and on the realization of peptide-based molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gellman, S.H. (1998) Foldamers: a manifesto. Acc. Chem. Res. 31, 173–180.

    Article  CAS  Google Scholar 

  2. Cheng, R.P. (2004) Beyond de novo protein design – de novo design of non-natural folded oligomers. Curr. Opin. Struct. Biol. 14, 512–520.

    Article  CAS  PubMed  Google Scholar 

  3. Crisma, M., Formaggio, F., Moretto, A. and Toniolo, C. (2006) Peptide helices based on α-amino acids. Biopolymers 84, 3–12.

    Article  CAS  PubMed  Google Scholar 

  4. Cubberley, M.S. and Iverson, B.L. (2001) Models of higher-order structure: foldamers and beyond. Curr. Opin. Chem. Biol. 5, 650–653.

    CAS  Google Scholar 

  5. Licini, G., Prins, L. and Scrimin, P. (2005) Oligopeptide foldamers: from structure to function. Eur. J. Org. Chem. 969–977.

    Google Scholar 

  6. Sanford, A.R., Yamato, K., Yang, X., Yuan, L., Han, Y. and Gong, B. (2004) Well-defined secondary structures. Information-storing molecular duplexes and helical foldamers based on unnatural peptide backbones. Eur. J. Biochem. 271, 1416–1425.

    Article  CAS  PubMed  Google Scholar 

  7. Toniolo, C., Crisma, M., Formaggio, F., Peggion, C., Broxtermann, Q.B. and Kaptein, B. (2004) Molecular spacers for physicochemical investigations based on novel helical and extended peptide structures. Biopolymers 76, 162–176.

    Article  CAS  PubMed  Google Scholar 

  8. Kleinkauf, H. and von Döhren, H. (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur. J. Biochem. 192, 1–15.

    Article  CAS  PubMed  Google Scholar 

  9. Aravinda, S., Shamala, N., Roy, R.S. and Balaram, P. (2003) Non-protein amino acids in peptide design. Proc. Indian Acad. Sci. (Chem. Sci.) 115, 373–400.

    CAS  Google Scholar 

  10. Toniolo, C., Crisma, M., Formaggio, F. and Peggion, C. (2001) Control of peptide conformation by the Thorpe-Ingold effect (Cα-tetrasubstitution). Biopolymers 60, 396–419.

    Article  CAS  PubMed  Google Scholar 

  11. Marshall, G.R. (1971) Studies on the biologically active conformations of angiotensin. In N. Kharasch (Ed.), Intra-Science Chemistry Report. Gordon and Breach, New York, pp. 305–316.

    Google Scholar 

  12. Pispisa, B., Palleschi, A., Venanzi, M. and Zanotti. G. (1996) Conformational statistics and energetic analysis of sequential peptides undergoing intramolecular transfer of excitation energy. J. Phys. Chem. B 100, 6835–6844.

    Article  CAS  Google Scholar 

  13. Pispisa, B., Palleschi, A., Stella, L., Venanzi, M. and Toniolo, C. (1998) A nitroxide derivative as a probe for conformational studies of short linear peptides in solution. A spectroscopic and molecular mechanics investigation. J. Phys. Chem. B 102, 7890–7898.

    Article  CAS  Google Scholar 

  14. Toniolo, C., Formaggio, F., Crisma, M., Mazaleyrat, J.P., Wakselman, M., George, C., Deschamps, J.R., Flippen-Anderson, J.L., Pispisa, B., Venanzi, M. and Palleschi, A. (1999) First peptide-based system of rigid donor – rigid interchromophore spacer – rigid acceptor: a structural and photophysical study. Chem. Eur. J. 5, 2254–2264.

    Article  CAS  Google Scholar 

  15. Pispisa, B., Mazzuca, C., Palleschi, A., Stella, L., Venanzi, M., Formaggio, F., Polese, A. and Toniolo, C. (2000) Structural features of linear, (αMe)Val-based peptides in solution by photophysical and theoretical conformational studies. Biopolymers 55, 425–435.

    Article  CAS  PubMed  Google Scholar 

  16. Pispisa, B., Palleschi, A., Stella, L., Venanzi, M., Formaggio, F., Polese, A. and Toniolo, C. (2000) Structural features of linear, homo-Aib based peptides in solution. A spectroscopic and molecular mechanics investigation. J. Pept. Res. 56, 298–306.

    Article  CAS  PubMed  Google Scholar 

  17. Pispisa, B., Stella, L., Venanzi, M., Palleschi, A., Viappiani, C., Polese, A., Formaggio, F. and Toniolo, C. (2000) Quenching mechanisms in bichromophoric, 310-helical Aib-based peptides, modulated by chain length-dependent topologies. Macromolecules 33, 906–915.

    Article  CAS  Google Scholar 

  18. Pispisa, B., Stella, L., Venanzi, M., Palleschi, A., Marchiori, F., Polese, A. and Toniolo, C. (2000) A spectroscopic and molecular mechanics investigation on a series of Aib-based linear peptides and a peptide template, both containing tryptophan and a nitroxide derivative as probes. Biopolymers, 53, 169–181.

    Article  CAS  PubMed  Google Scholar 

  19. Stella, L. (2001) Comparisons between time-resolved fluorescence experiments and computer simulations. In G. M. Giacometti and G. Giacometti (Eds.) Spectroscopic Techniques in Biophysics. IOS Press, Amsterdam, 2001, pp. 89–103.

    Google Scholar 

  20. Pispisa, B., Palleschi, A., Mazzuca, C., Stella, L., Valeri, A., Venanzi, M., Formaggio, F., Toniolo, C. and Broxterman, Q.B. (2002) The versatility of combining FRET measurements and molecular mechanics results for determining the structural features of ordered peptides in solution. J. Fluoresc. 12, 213–217.

    Article  CAS  Google Scholar 

  21. Pispisa, B., Mazzuca, C., Palleschi, A., Stella, L., Venanzi, M., Formaggio, F., Toniolo, C. and Broxterman, Q.B. (2002) Structural features and conformational equilibria of 310-helical peptides in solution by spectroscopic and molecular mechanics studies. Biopolymers 67, 247–250.

    Article  CAS  PubMed  Google Scholar 

  22. Pispisa, B., Palleschi, A., Stella, L., Venanzi, M., Formaggio, F., Toniolo, C. and Broxterman, Q.B (2002) Effects of helical distortions on the optical properties of amide NH infrared absorption in short peptides in solution. J. Phys. Chem. B 106, 5733–5738.

    Article  CAS  Google Scholar 

  23. Pispisa, B., Mazzuca, C., Palleschi, A., Stella, L., Venanzi, M., Formaggio, F., Toniolo, C., Mazaleyrat, J.P. and Wakselman, M. (2003) Spectroscopic properties and conformational features of short linear peptides in solution. A fluorescence and molecular mechanics investigation. J. Fluoresc. 13, 139–147.

    Article  CAS  Google Scholar 

  24. Pispisa, B., Mazzuca, C., Palleschi, A., Stella, L., Venanzi, M., Wakselman, M., Mazaleyrat, J.P., Rainaldi, M., Formaggio, F. and Toniolo, C. (2003) A combined spectroscopic and theoretical study of a series of conformationally restricted hexapeptides carrying a rigid binaphthyl-nitroxide donor-acceptor pair. Chem. Eur. J. 9, 2–11.

    Article  Google Scholar 

  25. Venanzi, M., Valeri, A., Palleschi, A., Stella, L., Moroder, L., Formaggio, F., Toniolo, C. and Pispisa, B. (2004) Structural properties and photophysical behavior of conformationally constrained hexapeptides functionalized with a new fluorescent analog of tryptophan and a nitroxide radical quencher. Biopolymers 75, 128–139.

    Article  CAS  PubMed  Google Scholar 

  26. Toniolo, C. and Benedetti, E. (1991) The polypeptide 310-helix. Trends Biochem. Sci. 16, 350–353.

    Article  CAS  PubMed  Google Scholar 

  27. Toniolo, C., Formaggio, F., Tognon, S., Broxterman, Q.B., Kaptein, B., Huang, R., Setnicka, V., Keiderling, T.A., McColl, I.H., Hecht, L. and Barron, L.D. (2004) The complete chirospectroscopic signature of the peptide 310-helix in aqueous solution. Biopolymers 75, 32–45.

    Article  CAS  PubMed  Google Scholar 

  28. Andrews, D.L. and Demidov A.A. (1999) Resonance Energy Transfer. Wiley, Chichester.

    Google Scholar 

  29. Lakowicz, J.R. (1999) Principles of Fluorescence Spectroscopy. Kluwer, New York.

    Google Scholar 

  30. Lewis, F.D., Zhang, L. and Zuo, X. (2005) Orientation control of fluorescence resonance energy transfer using DNA as a helical scaffold. J. Am. Chem. Soc. 127, 10002–10003.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, J. and Winnik, M.A. (2005) The orientation parameter for energy transfer in restricted geometries including block copolymer interfaces: a Monte Carlo study. J. Phys. Chem. B 109, 18408–18417.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng, W., Seward, H.E., Málnási-Csizmadia, A., Wakelin, S., Woolley, R.J., Cheema, G.S., Basran, J., Patel, T.R., Rowe, A.J. and Bagshaw, C.R. (2006) Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Biochemistry 45, 10482–10491.

    Article  CAS  PubMed  Google Scholar 

  33. Crisma, M., Deschamps, J.R., George, C., Flippen-Anderson, J.L., Kaptein, B., Boxterman, Q.B., Moretto, A., Oancea, S., Jost, M., Formaggio, F. and Toniolo, C. (2005) A topographic and conformationally constrained, spin-labeled, α-amino acid: a crystallographic characterization in peptides. J. Pept. Res. 65, 564–579.

    Article  CAS  PubMed  Google Scholar 

  34. Kubelka, J., Hofrichter, J. and Eaton, W.A. (2004) The protein folding “speed limit”. Curr. Opin. Struct. Biol. 14, 76–88.

    Article  CAS  PubMed  Google Scholar 

  35. Snow, C.D., Nguyen, H., Pande, V.S. and Gruebele, M. (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420, 102–106.

    Article  CAS  PubMed  Google Scholar 

  36. Eaton, W.A., Muñoz, V., Hagen, S.J., Jas, G.S., Lapidus, L.J., Henry E.R. and Hofrichter, J. (2000) Fast kinetics and mechanisms in protein folding. Annu. Rev. Biophys. Biomol. Struct. 29, 327–359.

    Article  CAS  PubMed  Google Scholar 

  37. Stella, L., Mazzuca, C., Venanzi, M., Palleschi, A., Didonè, M., Formaggio, F., Toniolo, C. and Pispisa, B. (2004). Aggregation and water-membrane partition as major determinants of the activity of the antibiotic peptide trichogin GA IV. Biophys. J. 86, 936–945.

    Article  PubMed  Google Scholar 

  38. Mazzuca, C., Stella, L., Venanzi, M., Formaggio, F., Toniolo, C. and Pispisa, B. (2005) Mechanism of membrane activity of the antibiotic trichogin GA IV: a two-state transition controlled by peptide concentration. Biophys. J. 88, 3411–3421.

    Article  CAS  PubMed  Google Scholar 

  39. Gatto, E., Mazzuca, C., Stella, L., Venanzi, M., Toniolo, C. and Pispisa, B. (2006) Effect of peptide lipidation on membrane perturbing activity: a comparative study on two trichogin analogues. J. Phys. Chem. B. 110, 22813–22818.

    Google Scholar 

  40. Toniolo, C., Peggion, C., Crisma, M., Formaggio, F., Shui, X. and Eggleston, D.S. (1994) Structure determination of racemic trichogin A IV using centrosymmetric crystals. Nat. Struct. Biol. 1, 908–914.

    Article  CAS  PubMed  Google Scholar 

  41. Auvin-Guette, C., Rebuffat, S., Prigent, Y. and Bodo, B. (1992) Trichogin A IV, an 11-residue lipopeptaibol from Trichoderma longibrachiatum. J. Am. Chem. Soc. 114, 2170–2174.

    Article  CAS  Google Scholar 

  42. Monaco, V., Locardi, E., Formaggio, F., Crisma, M., Mammi, S., Peggion, E., Toniolo, C., Rebuffat, S. and Bodo, B. (1998). Solution conformational analysis of amphiphilic helical, synthetic analogs of the lipopeptaibol trichogin GA IV. J. Pept. Res. 52, 261–272.

    Article  CAS  PubMed  Google Scholar 

  43. Venanzi, M., Gatto, E., Bocchinfuso, G., Palleschi, A., Stella, L., Formaggio, F. and Toniolo, C. (2006) Dynamics of formation of a helix-turn-helix structure in a membrane-active peptide: a time-resolved spectroscopic study. ChemBioChem 7, 43–45.

    Article  CAS  PubMed  Google Scholar 

  44. Venanzi, M., Gatto, E., Bocchinfuso, G., Palleschi, A., Stella, L., Baldini, C., Formaggio, F. and Toniolo, C. (2006) Peptide folding dynamics: a time-resolved study from the nanosecond to the microsecond time regime. J. Phys. Chem. B 110, 22834–22841.

    Google Scholar 

  45. Pace, G., Venanzi, M., Castrucci, P., Scarselli, M., De Crescenzi, M., Palleschi, A., Stella, L., Formaggio, F., Toniolo, C. and Marletta, G. (2006) Static and dynamic features of a helical hexapeptide chemisorbed on a gold surface. Mater. Sci. Eng. C. 27, 1309–1312.

    Article  CAS  Google Scholar 

  46. Venanzi, M., Pace, G., Palleschi, A., Stella, L., Castrucci, P., Scarselli, M., De Crescenzi, M., Formaggio, F., Toniolo, C. and Marletta, G. (2006) Densely-packed self-assembled monolayers on gold surfaces from a conformationally constrained helical hexapeptide. Surf. Sci. 600, 409–416.

    Article  CAS  Google Scholar 

  47. Gatto, E., Venanzi, M., Palleschi, A., Stella, L., Pispisa, B., Lorenzelli, L., Toniolo, C., Formaggio, F. and Marletta, G. (2006) Self-assembled peptide monolayers on interdigitated gold microelectrodes. Mater. Sci. Eng. C 27, 1309–1312.

    Article  Google Scholar 

  48. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G. and Whitesides, G.M. (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170.

    Article  CAS  PubMed  Google Scholar 

  49. Sia, S.K., Carr, P.A., Cochran, A.G., Malashkevich, V.N. and Kim, P.S. (2002) Short constrained peptides that inhibit HIV-1 entry. Proc. Natl. Acad. Sci. USA 99, 14664–14669.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Stella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stella, L. et al. (2010). Peptide Foldamers: From Spectroscopic Studies to Applications. In: Geddes, C.D. (eds) Reviews in Fluorescence 2008. Reviews in Fluorescence 2008, vol 2008. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1260-2_17

Download citation

Publish with us

Policies and ethics