Skip to main content

Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders

  • Chapter
  • First Online:
Developmental Plasticity of Inhibitory Circuitry

Abstract

Clinical observations and retrospective studies in postmortem tissues indicate that cerebral cortical GABA systems are disrupted in a number of psychiatric and neurological disorders. Because GABAergic interneuron maturation is influenced substantially by activity-dependent mechanisms, it is unclear whether these associations are a cause or a consequence of a given disorder. Cortical GABA systems have received increased attention as targets of convergent pathophysiological processes because experimental manipulations of GABA systems in model organisms cause disturbances in the regulation of normal physiological activity, cognition and emotion. The disruptions often parallel certain dimensional components of clinical diagnoses, leading to testable hypotheses about the mechanisms through which altered development and maturation of GABAergic interneurons result in specific neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG (1995) GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 5:550–560

    CAS  PubMed  Google Scholar 

  • Alcántara S, Ferrer I (1994) Postnatal development of parvalbumin immunoreactivity in the cerebral cortex of the cat. J Comp Neurol 348:133–149

    PubMed  Google Scholar 

  • Alcantara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

    CAS  Google Scholar 

  • Alcántara S, Ferrer I, Soriano E (1993) Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Anat Embryol (Berl) 188:63–73

    Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    CAS  PubMed  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    CAS  PubMed  Google Scholar 

  • Ashley-Koch AE, Mei H, Jaworski J, Ma DQ, Ritchie MD, Menold MM, Delong GR, Abramson RK, Wright HH, Hussman JP, Cuccaro ML, Gilbert JR, Martin ER, Pericak-Vance MA (2006) An analysis paradigm for investigating multi-locus effects in complex disease: examination of three GABA receptor subunit genes on 15q11–q13 as risk factors for autistic disorder. Ann Hum Genet 70:281–292

    CAS  PubMed  Google Scholar 

  • Bailey DB Jr, Mesibov GB, Hatton DD, Clark RD, Roberts JE, Mayhew L (1998) Autistic behavior in young boys with fragile X syndrome. J Autism Dev Disord 28:499–508

    PubMed  Google Scholar 

  • Baker AE, Lane A, Angley MT, Young RL (2008) The relationship between sensory processing patterns and behavioural responsiveness in autistic disorder: a pilot study. J Autism Dev Disord 38(5):867–875

    PubMed  Google Scholar 

  • Beavis J, Kerr M, Marson AG (2007) Pharmacological interventions for epilepsy in people with intellectual disabilities. Cochrane Database Syst Rev CD005399

    Google Scholar 

  • Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996a) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349

    CAS  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Marie A, Khan Y (1996b) Up-regulation of GABAA receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 75:1021–1031

    CAS  PubMed  Google Scholar 

  • Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31:537–543

    CAS  PubMed  Google Scholar 

  • Blue ME, Parnavelas JG (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J Neurocytol 12:697–712

    CAS  PubMed  Google Scholar 

  • Bowley C, Kerr M (2000) Epilepsy and intellectual disability. J Intellect Disabil Res 44(Pt 5):529–543

    PubMed  Google Scholar 

  • Buxhoeveden DP, Semendeferi K, Buckwalter J, Schenker N, Switzer R, Courchesne E (2006) Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol Appl Neurobiol 32:483–491

    CAS  PubMed  Google Scholar 

  • Caballero IM, Hendrich B (2005) MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet 14 Spec No 1:R19–R26

    Google Scholar 

  • Calford MB (2002) Dynamic representational plasticity in sensory cortex. Neuroscience 111:709–738

    CAS  PubMed  Google Scholar 

  • Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P (2006) A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 103:16834–16839

    CAS  PubMed  Google Scholar 

  • Campbell DB, D’Oronzio R, Garbett K, Ebert PJ, Mirnics K, Levitt P, Persico AM (2007) Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol 62:243–250

    PubMed  Google Scholar 

  • Canitano R (2007) Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 16:61–66

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Brown C (2002a) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17:692–695

    PubMed  Google Scholar 

  • Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002b) Minicolumnar pathology in autism. Neurology 58:428–432

    PubMed  Google Scholar 

  • CDC (2007) Prevalence of autism spectrum disorders – Autism and Developmental Disabilities Monitoring Network. MMWR 56 (SS-1)

    Google Scholar 

  • Cobos I, Calcagnotto ME, Vilaythong AJ, Thwin MT, Noebels JL, Baraban SC, Rubenstein JL (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilespy. Nat Neurosci 8:1059–1068

    CAS  PubMed  Google Scholar 

  • Constantinidis C, Williams GV, Goldman-Rakic PS (2002) A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5:175–180

    CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Killackey HP, Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569

    CAS  PubMed  Google Scholar 

  • Curatolo P, Verdecchia M, Bombardieri R (2002) Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediatr Neurol 6:15–23

    PubMed  Google Scholar 

  • Dan B, Boyd SG (2003) Angelman syndrome reviewed from a neurophysiological perspective. The UBE3A-GABRB3 hypothesis. Neuropediatrics 34:169–176

    CAS  PubMed  Google Scholar 

  • D’Antuono M, Merlo D, Avoli M (2003) Involvement of cholinergic and gabaergic systems in the fragile X knockout mice. Neuroscience 119:9–13

    PubMed  Google Scholar 

  • de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

    PubMed  Google Scholar 

  • de Vries P, Humphrey A, McCartney D, Prather P, Bolton P, Hunt A (2005) Consensus clinical guidelines for the assessment of cognitive and behavioural problems in Tuberous Sclerosis. Eur Child Adolesc Psychiatry 14:183–190

    PubMed  Google Scholar 

  • Dean B, Hussain T, Hayes W, Scarr E, Kitsoulis S, Hill C, Opeskin K, Copolov DL (1999) Changes in serotonin2A and GABA(A) receptors in schizophrenia: studies on the human dorsolateral prefrontal cortex. J Neurochem 72:1593–1599

    CAS  PubMed  Google Scholar 

  • DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122(Pt 10):1807–1822

    PubMed  Google Scholar 

  • DeFelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412:515–526

    CAS  PubMed  Google Scholar 

  • Deng C, Huang XF (2006) Increased density of GABAA receptors in the superior temporal gyrus in schizophrenia. Exp Brain Res 168:587–590

    CAS  PubMed  Google Scholar 

  • Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8:PR1–PR6

    CAS  PubMed  Google Scholar 

  • D’Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA, Kooy RF (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121:238–245

    PubMed  Google Scholar 

  • Eagleson KL, Bonnin A, Levitt P (2005) Region- and age-specific deficits in gamma-aminobutyric acidergic neuron development in the telencephalon of the uPAR(-/-) mouse. J Comp Neurol 489:449–466

    PubMed  Google Scholar 

  • Ebert MH, Schmidt DE, Thompson T, Butler MG (1997) Elevated plasma gamma-aminobutyric acid (GABA) levels in individuals with either Prader-Willi syndrome or Angelman syndrome. J Neuropsychiatry Clin Neurosci 9:75–80

    CAS  PubMed  Google Scholar 

  • ECTS C (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315

    Google Scholar 

  • Elston GN, Gonzalez-Albo MC (2003) Parvalbumin-, calbindin-, and calretinin-immunoreactive neurons in the prefrontal cortex of the owl monkey (Aotus trivirgatus): a standardized quantitative comparison with sensory and motor areas. Brain Behav Evol 62:19–30

    PubMed  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810

    CAS  PubMed  Google Scholar 

  • Fatemi SH, Stary JM, Earle JA, Araghi-Niknam M, Eagan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res 72:109–122

    PubMed  Google Scholar 

  • Gantois I, Vandesompele J, Speleman F, Reyniers E, D’Hooge R, Severijnen LA, Willemsen R, Tassone F, Kooy RF (2006) Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21:346–357

    CAS  PubMed  Google Scholar 

  • Gao WJ, Newman DE, Wormington AB, Pallas SL (1999) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons. J Comp Neurol 409:261–273

    CAS  PubMed  Google Scholar 

  • Gao WJ, Wormington AB, Newman DE, Pallas SL (2000) Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of calbindin- and parvalbumin-containing neurons. J Comp Neurol 422:140–157

    CAS  PubMed  Google Scholar 

  • Goulden KJ, Shinnar S, Koller H, Katz M, Richardson SA (1991) Epilepsy in children with mental retardation: a cohort study. Epilepsia 32:690–697

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23:6315–6326

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN, Sun Z, Sampson AR, Lewis DA (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 25:372–383

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Arion D, Unger T, Maldonado-Aviles JG, Morris HM, Volk DW, Mirnics K, Lewis DA (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13(2):147–161

    CAS  PubMed  Google Scholar 

  • Hendry SH, Schwark HD, Jones EG, Yan J (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503–1519

    CAS  PubMed  Google Scholar 

  • Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303:1678–1681

    CAS  PubMed  Google Scholar 

  • Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77–116

    CAS  PubMed  Google Scholar 

  • Hogan D, Terwilleger ER, Berman NE (1992) Development of subpopulations of GABAergic neurons in cat visual cortical areas. Neuroreport 3:1069–1072

    CAS  PubMed  Google Scholar 

  • Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, Greenberg F (1993) Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402

    CAS  PubMed  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37:31–40

    CAS  PubMed  Google Scholar 

  • Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    CAS  PubMed  Google Scholar 

  • Huntsman MM, Tran BV, Potkin SG, Bunney WE Jr, Jones EG (1998) Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 95:15066–15071

    CAS  PubMed  Google Scholar 

  • Hussman JP (2001) Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31:247–248

    CAS  PubMed  Google Scholar 

  • Joinson C, O’Callaghan FJ, Osborne JP, Martyn C, Harris T, Bolton PF (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol Med 33:335–344

    CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. J Neurophysiol 91:2551–2567

    PubMed  Google Scholar 

  • Kern JK, Trivedi MH, Garver CR, Grannemann BD, Andrews AA, Savla JS, Johnson DG, Mehta JA, Schroeder JL (2006) The pattern of sensory processing abnormalities in autism. Autism 10:480–494

    PubMed  Google Scholar 

  • Kern JK, Trivedi MH, Grannemann BD, Garver CR, Johnson DG, Andrews AA, Savla JS, Mehta JA, Schroeder JL (2007) Sensory correlations in autism. Autism 11:123–134

    PubMed  Google Scholar 

  • Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15:70–73

    CAS  PubMed  Google Scholar 

  • Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns WB, Yokoyama M, Morohashi K (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369

    CAS  PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    CAS  PubMed  Google Scholar 

  • Levitt P (2005) Disruption of interneuron development. Epilepsia 46(Suppl 7):22–28

    CAS  PubMed  Google Scholar 

  • Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406

    CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T (2007) Deciphering the disease process of schizophrenia: the contribution of cortical gaba neurons. Int Rev Neurobiol 78:109–131

    CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    CAS  PubMed  Google Scholar 

  • Loup F, Picard F, Andre VM, Kehrli P, Yonekawa Y, Wieser HG, Fritschy JM (2006) Altered expression of alpha3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 129:3277–3289

    PubMed  Google Scholar 

  • Lucignani G, Panzacchi A, Bosio L, Moresco RM, Ravasi L, Coppa I, Chiumello G, Frey K, Koeppe R, Fazio F (2004) GABA A receptor abnormalities in Prader-Willi syndrome assessed with positron emission tomography and [11C]flumazenil. Neuroimage 22:22–28

    PubMed  Google Scholar 

  • Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, Ritchie MD, Delong GR, Abramson RK, Wright HH, Cuccaro ML, Hussman JP, Gilbert JR, Pericak-Vance MA (2005) Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77:377–388

    CAS  PubMed  Google Scholar 

  • Malow BA (2004) Sleep disorders, epilepsy, and autism. Ment Retard Dev Disabil Res Rev 10:122–125

    PubMed  Google Scholar 

  • Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123:81–90

    CAS  PubMed  Google Scholar 

  • Marty S, Berzaghi Mda P, Berninger B (1997) Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 20:198–202

    CAS  PubMed  Google Scholar 

  • Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15:74–77

    CAS  PubMed  Google Scholar 

  • McCauley JL, Olson LM, Delahanty R, Amin T, Nurmi EL, Organ EL, Jacobs MM, Folstein SE, Haines JL, Sutcliffe JS (2004) A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. Am J Med Genet B Neuropsychiatr Genet 131:51–59

    Google Scholar 

  • Melkman T, Sengupta P (2005) Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development 132:1935–1949

    CAS  PubMed  Google Scholar 

  • Miller MW (1986) Maturation of rat visual cortex. III. Postnatal morphogenesis and synaptogenesis of local circuit neurons. Brain Res 390:271–285

    CAS  PubMed  Google Scholar 

  • Minshew NJ, Sweeney J, Luna B (2002) Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Mol Psychiatry 7(Suppl 2):S14–S15

    PubMed  Google Scholar 

  • Mohler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102:1–12

    CAS  PubMed  Google Scholar 

  • Morgan CL, Baxter H, Kerr MP (2003) Prevalence of epilepsy and associated health service utilization and mortality among patients with intellectual disability. Am J Ment Retard 108:293–300

    PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701–722

    PubMed  Google Scholar 

  • Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Dalla Bernardina B, Tassinari CA, De Sarro GB, Elia M (1999) Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 40:1092–1099

    CAS  PubMed  Google Scholar 

  • Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC (1999) Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABA(A) receptor alpha-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 93:441–448

    CAS  PubMed  Google Scholar 

  • Pearl PL, Novotny EJ, Acosta MT, Jakobs C, Gibson KM (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54(Suppl 6):S73–S80

    CAS  PubMed  Google Scholar 

  • Pelc K, Boyd SG, Cheron G, Dan B (2008) Epilepsy in Angelman syndrome. Seizure 17(3):211–217

    PubMed  Google Scholar 

  • Pierri JN, Chaudry AS, Woo TU, Lewis DA (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156:1709–1719

    CAS  PubMed  Google Scholar 

  • Powell EM, Mars WM, Levitt P (2001) Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron 30:79–89

    CAS  PubMed  Google Scholar 

  • Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P (2003) Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci 23:622–631

    CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Beasley CL (2001) GABAergic neuronal subtypes in the human frontal cortex – development and deficits in schizophrenia. J Chem Neuroanat 22:95–100

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Beasley CL, Zhang ZJ (2002) Understanding the neurotransmitter pathology of schizophrenia: selective deficits of subtypes of cortical GABAergic neurons. J Neural Transm 109:881–889

    CAS  PubMed  Google Scholar 

  • Roberts E (1972) Prospects for research on schizophrenia. An hypotheses suggesting that there is a defect in the GABA system in schizophrenia. Neurosci Res Program Bull 10:468–482

    CAS  PubMed  Google Scholar 

  • Rolf LH, Haarmann FY, Grotemeyer KH, Kehrer H (1993) Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr Scand 87:312–316

    CAS  PubMed  Google Scholar 

  • Rubenstein JL, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267

    CAS  PubMed  Google Scholar 

  • Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17:4527–4535

    CAS  PubMed  Google Scholar 

  • Saitoh S, Harada N, Jinno Y, Hashimoto K, Imaizumi K, Kuroki Y, Fukushima Y, Sugimoto T, Renedo M, Wagstaff J et al (1994) Molecular and clinical study of 61 Angelman syndrome patients. Am J Med Genet 52:158–163

    CAS  PubMed  Google Scholar 

  • Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14:483–492

    CAS  PubMed  Google Scholar 

  • Shapira NA, Lessig MC, Murphy TK, Driscoll DJ, Goodman WK (2002) Topiramate attenuates self-injurious behaviour in Prader-Willi Syndrome. Int J Neuropsychopharmacol 5:141–145

    CAS  PubMed  Google Scholar 

  • Sherr EH (2003) The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr 15:567–571

    PubMed  Google Scholar 

  • Shields WD (2004) Surgical treatment of refractory epilepsy. Curr Treat Options Neurol 6:349–356

    PubMed  Google Scholar 

  • Smalley SL (1998) Autism and tuberous sclerosis. J Autism Dev Disord 28:407–414

    CAS  PubMed  Google Scholar 

  • Smathers SA, Wilson JG, Nigro MA (2003) Topiramate effectiveness in Prader-Willi syndrome. Pediatr Neurol 28:130–133

    PubMed  Google Scholar 

  • Szabat E, Soinila S, Happola O, Linnala A, Virtanen I (1992) A new monoclonal antibody against the GABA-protein conjugate shows immunoreactivity in sensory neurons of the rat. Neuroscience 47:409–420

    CAS  PubMed  Google Scholar 

  • Tamamaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    CAS  PubMed  Google Scholar 

  • Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, Pratley RE, Lawson M, Reiman EM, Ravussin E (1999) Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA 96:4569–4574

    CAS  PubMed  Google Scholar 

  • Tecchio F, Benassi F, Zappasodi F, Gialloreti LE, Palermo M, Seri S, Rossini PM (2003) Auditory sensory processing in autism: a magnetoencephalographic study. Biol Psychiatry 54:647–654

    PubMed  Google Scholar 

  • Tomchek SD, Dunn W (2007) Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occup Ther 61:190–200

    PubMed  Google Scholar 

  • Tommerdahl M, Tannan V, Cascio CJ, Baranek GT, Whitsel BL (2007) Vibrotactile adaptation fails to enhance spatial localization in adults with autism. Brain Res 1154:116–123

    CAS  PubMed  Google Scholar 

  • Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    PubMed  Google Scholar 

  • Valencia I, Legido A, Yelin K, Khurana D, Kothare SV, Katsetos CD (2006) Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex. J Child Neurol 21:1058–1063

    PubMed  Google Scholar 

  • Valente KD, Koiffmann CP, Fridman C, Varella M, Kok F, Andrade JQ, Grossmann RM, Marques-Dias MJ (2006) Epilepsy in patients with angelman syndrome caused by deletion of the chromosome 15q11–13. Arch Neurol 63:122–128

    PubMed  Google Scholar 

  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808

    PubMed  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914

    CAS  PubMed  Google Scholar 

  • Vincent JB, Horike SI, Choufani S, Paterson AD, Roberts W, Szatmari P, Weksberg R, Fernandez B, Scherer SW (2006) An inversion inv(4)(p12–p15.3) in autistic siblings implicates the 4p GABA receptor gene cluster. J Med Genet 43:429–434

    CAS  PubMed  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    CAS  PubMed  Google Scholar 

  • Volk D, Austin M, Pierri J, Sampson A, Lewis D (2001) GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 158:256–265

    CAS  PubMed  Google Scholar 

  • Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12:1063–1070

    PubMed  Google Scholar 

  • White R, Hua Y, Scheithauer B, Lynch DR, Henske EP, Crino PB (2001) Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 49:67–78

    CAS  PubMed  Google Scholar 

  • Williams DL, Goldstein G, Minshew NJ (2006) Neuropsychologic functioning in children with autism: further evidence for disordered complex information-processing. Child Neuropsychol 12:279–298

    PubMed  Google Scholar 

  • Wong V (2006) Study of the relationship between tuberous sclerosis complex and autistic disorder. J Child Neurol 21:199–204

    PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 95:5341–5346

    CAS  PubMed  Google Scholar 

  • Zafeiriou DI, Ververi A, Vargiami E (2007) Childhood autism and associated comorbidities. Brain Dev 29:257–272

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NICHD P30 grant HD15052, the Marino Autism Research Institute and NIMH grant MH067842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathie L. Eagleson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eagleson, K.L., Hammock, E.A.D., Levitt, P. (2010). Interneuron Pathophysiologies: Paths to Neurodevelopmental Disorders. In: Pallas, S. (eds) Developmental Plasticity of Inhibitory Circuitry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1243-5_9

Download citation

Publish with us

Policies and ethics