Skip to main content

Emotional Intelligence and Gender: A Neurophysiological Perspective

  • Chapter
  • First Online:
Handbook of Individual Differences in Cognition

Part of the book series: The Springer Series on Human Exceptionality ((SSHE))

Abstract

The focus of the present chapter is on neuropsychological underpinnings of gender differences in mental abilities, in general, and emotional intelligence (EI). As stressed by Nyborg (1994), it is a topic which is a minefield of methodological and theoretical problems. It is also a sensitive area packed with ideology and concern over “political correctness.” For example, test constructors have calibrated their instruments to conform to dogmas of equality between genders. Certain test items were removed, so that the test no longer showed a gender difference in overall intelligence (Vogel, 1990; Wechsler, 1981). Some recent findings, indicating that males outscore females by about 3.8 IQ points (Jackson & Rushton, 2006; Lynn &Irwing, 2004), are therefore puzzling and difficult to explain. Is the difference even greater? Have the test constructors done a bad job? Nyborg (2005, p. 507) concluded that “[p]roper methodology identifies a male advantage in g that increases exponentially at higher levels, relates to brain size, and explains, at least in part, the universal male dominance in society.” The central thesis of this chapter is that gender should be a major variable in studying the relation between individual differences in ability and brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelang, M., & Steinmayr, R. (2006). Is there a validity increment for tests of emotional intelligence in explaining the variance of performance criteria? Intelligence, 34, 459–468.

    Article  Google Scholar 

  • Anokhin, A. P., Golosheykin, S., Sirevaag, E., Kristjansson, S., Rohrbaugh, J. W., & Heath, A. C. (2006). Rapid discrimination of visual scene content in the human brain. Brain Research, 1093, 167–177.

    Article  PubMed  Google Scholar 

  • Anokhin, A. P., Lutzenberger, W., & Birbaumer, N. (1999). Spatiotemporal organization of brain dynamics and intelligence: An EEG study in adolescents. International Journal of Psychophysiology, 33, 259–273.

    Article  PubMed  Google Scholar 

  • Anokhin, A., & Vogel, F. (1996). EEG alpha rhythm frequency and intelligence in normal adults. Intelligence, 23, 1–14.

    Article  Google Scholar 

  • Aurlien, H., Gjerde, O. I., Aarseth, J. H., Eldøen, G., Karlsen, B., Skeidsvoll, H., et al. (2004). EEG background activity described by a large computerized database. Clinical Neurophysiology, 115, 665–673.

    Article  PubMed  Google Scholar 

  • Babchuk, W. A., Hames, R. B., & Thompson, R. A. (1985). Sex differences in the recognition of infant facial expressions of emotion: The primary caretaker hypothesis. Ethology and Sociobiology, 6, 89–101.

    Article  Google Scholar 

  • Bar-On, R. (2000). Emotional and social intelligence: Insights from the emotional quotient inventory. In R. Bar-On & J. D. A. Parker (Eds.), The handbook of emotional intelligence (pp. 363–388). San Francisco: Jossey-Bass.

    Google Scholar 

  • Başar, E., Başar-Eroglu, C., Krakaş, S., & Schürmann, M. (2001). Gamma, alpha delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241–248.

    Article  PubMed  Google Scholar 

  • Bernat, E., Bunce, S., & Shevrin, H. (2001). Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing. International Journal of Psychophysiology, 42, 11–34.

    Article  PubMed  Google Scholar 

  • Bhattacharya, J., Petsche, H., & Pereda, E. (2001). Long-range synchrony in the γ band: Role in music perception. The Journal of Neuroscience, 21, 6329–6337.

    PubMed  Google Scholar 

  • Boden, M. T., & Berenbaum, H. (2007). Emotional awareness, gender, and suspiciousness. Cognition and Emotion, 21, 268–280.

    Article  PubMed  Google Scholar 

  • Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47.

    Article  PubMed  Google Scholar 

  • Cahill, L. (2003). Sex-related influences on the neurobiology of emotional influenced memory. Annals of the New York Academy of Science, 985, 163–173.

    Article  Google Scholar 

  • Cantor, N., & Kihlstrom, J. F. (1985). Social intelligence: The cognitive basis of personality. In P. Shaver (Ed.), Review of personality and social psychology (Vol. 6, pp. 15–33). Beverly Hills, CA: Sage.

    Google Scholar 

  • Cantor, N., & Kihlstrom, J. F. (1987). Personality and social intelligence. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Caprara, G. V., Barbaranelli, C., Borgogni, L., Bucik, V., & Boben, D. (2002). Model “velikih pet” Priročnik za merjenje strukture osebnosti. Ljubljana: Center za psihodiagnostična sredstva.

    Google Scholar 

  • Ciarrochi, J., Hynes, K., & Crittenden, N. (2005). Can men do better if they try harder: Sex and motivational effects on emotional awareness. Cognition and Emotion, 19, 133–141.

    Article  Google Scholar 

  • Coffey, E., Berenbaum, H., & Kerns, J. K. (2003). The dimensions of emotional intelligence, alexithymia, and mood awareness: Associations with personality and performance on an emotional Stroop task. Cognition and Emotion, 17, 671–679.

    Article  Google Scholar 

  • Colom, R., & Lynn, R. (2004). Testing the developmental theory of sex differences in intelligence on 12–18 year olds. Personality and Individual Differences, 36, 75–82.

    Article  Google Scholar 

  • Corsi-Cabrera, M., Arce, C., Ramos, J., & Guevara, M. A. (1997). Effect of spatial ability and sex on inter- and intrahemispheric correlation of EEG activity. Electroencephalography and Clinical Neurophysiology, 102, 5–11.

    Article  PubMed  Google Scholar 

  • De Bellis, M. D., Keshavan, M. S., Beers, S. R., Hall, J., Frustaci, K., Masalehdan, A., et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cerebral Cortex, 11, 552–557.

    Article  PubMed  Google Scholar 

  • De Courten-Myers, G. M. (1999). The human cerebral cortex: Gender differences in structure and function. Journal of Neuropathology and Experimental Neurology, 58, 217–226.

    Article  PubMed  Google Scholar 

  • De Raad, B. (2005). The trait-coverage of emotional intelligence. Personality and Individual Differences, 38, 673–687.

    Article  Google Scholar 

  • Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30, 289–302.

    Article  Google Scholar 

  • Extremera, N., Fernandez-Berrocal, P., & Salovey, P. (2006). Spanish version of the Mayer-Salovey-Caruso emotional intelligence test (MSCEIT). Version 2.0: Reliabilities, age and gender differences. Psicothema, 18, 42–48.

    PubMed  Google Scholar 

  • Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences. New York: Plenum.

    Book  Google Scholar 

  • Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.

    Article  PubMed  Google Scholar 

  • Freudenthaler, H. H., Fink, A., & Neubauer, A. C. (2006). Emotional abilities and cortical activation during emotional information processing. Personality and Individual Differences, 41, 685–695.

    Article  Google Scholar 

  • Garai, J., & Scheinfeld, A. (1968). Sex differences in mental and behavioral traits. Genetic Psychology Monographs, 77, 169–299.

    Google Scholar 

  • Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 830–839.

    Article  Google Scholar 

  • Giannitrapani, D. (1969). EEG average frequency and intelligence. Electroencephalography and Clinical Neurophysiology, 27, 480–486.

    Article  PubMed  Google Scholar 

  • Gohm, C. L., & Clore, G. L. (2000). Individual differences in emotional experience: Mapping available scales to processes. Personality and Social Psychology Bulletin, 26, 679–697.

    Article  Google Scholar 

  • Gohm, C. L., & Clore, G. L. (2002). Four latent traits of emotional experience and their involvement in well-being, coping, and their attributional style. Cognition and Emotion, 16, 495–518.

    Article  Google Scholar 

  • Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: Correlations with cognitive performance. Journal of Neuroscience, 19, 4065–4072.

    PubMed  Google Scholar 

  • Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralization in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 4, 405–414.

    Article  Google Scholar 

  • Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. Neuroimage, 25, 320–327.

    Article  PubMed  Google Scholar 

  • Haier, R. J., Neuchterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217.

    Article  Google Scholar 

  • Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426.

    Article  Google Scholar 

  • Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429–441.

    Article  Google Scholar 

  • Hall, J. A. (1978). Gender effects in decoding nonverbal cues. Psychological Bulletin, 85, 845–857.

    Article  Google Scholar 

  • Hall, J. A. (1984). Nonverbal sex differences: Communication accuracy and expressive style. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Halpern, D. F. (2004). A cognitive-process taxonomy for sex differences in cognitive abilities. Current Directions in Psychological Science, 13, 135–139.

    Article  Google Scholar 

  • Harshman, R. A., Hampson, E., & Berenbaum, S. A. (1983). Individual differences in cognitive abilities and brain organization: Part I. Sex and handedness differences in ability. Canadian Journal of Psychology, 37, 144–192.

    Article  PubMed  Google Scholar 

  • Henley, N. M. (1977). Body politics: Power, sex and nonverbal communication. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Herlitz, A., Nilsson, L. G., & Backman, L. (1997). Gender differences in episodic memory. Memory and Cognition, 25, 801–811.

    Article  Google Scholar 

  • Hyde, J. S. (1981). How large are cognitive gender differences? American Psychologist, 36, 892–901.

    Article  Google Scholar 

  • Ito, T. A., Cacioppo, J. T., & Lang, P. J. (1998). Eliciting affect using the International Affective Picture System: trajectories through evaluative space. Personality and Social Psychology Bulletin, 24, 855–879.

    Article  Google Scholar 

  • Jackson, N. D., & Rushton, J. P. (2006). Males have greater g: Sex differences in general mental ability from 100,000 17- to 18-year-olds on the scholastic assessment test. Intelligence, 34, 479–486.

    Article  Google Scholar 

  • Jaušovec, N. (1996). Differences in EEG alpha activity related to giftedness. Intelligence, 23, 159–173.

    Article  Google Scholar 

  • Jaušovec, N. (1997). Differences in EEG alpha activity between gifted and non-identified individuals: Insights into problem solving. Gifted Child Quarterly, 41, 26–32.

    Article  Google Scholar 

  • Jaušovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25, 253–267.

    Article  Google Scholar 

  • Jaušovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237.

    Article  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2000a). Correlations between ERP parameters and intelligence: A reconsideration. Biological Psychology, 50, 137–154.

    Article  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2000b). Differences in event-related and induced brain oscillations in the theta and alpha frequency bands related to human intelligence. Neuroscience Letters, 293, 191–194.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2000c). Differences in resting EEG related to ability. Brain Topography, 12, 229–240.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2001). Differences in EEG current density related to intelligence. Cognitive Brain Research, 12, 55–60.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2003). Spatiotemporal brain activity related to intelligence: A low resolution brain electromagnetic tomography study. Cognitive Brain Research, 16, 267–272.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2004a). Intelligence related differences in induced brain activity during the performance of memory tasks. Personality and Individual Differences, 36, 597–612.

    Article  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2004b). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain and Cognition, 54, 65–74.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2005a). Differences in induced gamma and upper alpha oscillations in the human brain related to verbal/performance and emotional intelligence. International Journal of Psychophysiology, 56, 223–235.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2005b). Sex differences in brain activity related to general and emotional intelligence. Brain and Cognition, 59, 277–286.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2007). Personality, gender and brain oscillations. International Journal of Psychophysiology, 66(2007), 215–224.

    Article  PubMed  Google Scholar 

  • Jaušovec, N., & Jaušovec, K. (2008). Spatial-rotation and recognizing emotions: Gender related differences in brain activity. Intelligence, 36, 383–393.

    Article  Google Scholar 

  • Jaušovec, N., Jaušovec, K., & Gerlič, I. (2001). Differences in event related and induced EEG patterns in the theta and alpha frequency bands related to human emotional intelligence. Neuroscience Letters, 311, 93–96.

    Article  PubMed  Google Scholar 

  • Jensen, A. (1998). The g factor. Westport, CN: Praeger.

    Google Scholar 

  • Karakaş, S., & Başar, E. (1998). Early gamma response is sensory in origin: A conclusion based on cross-comparison of results from multiple experimental paradigms. International Journal of Psychophysiology, 31, 13–31.

    Article  PubMed  Google Scholar 

  • Karakaş, S., Tüfekçi, İ., Bekçi, B., Çakmak, E. D., Doğutepe, E., Erzengin, Ö. U., et al. (2006). Early time-locked gamma response and gender specificity. International Journal of Psychophysiology, 60, 225–239.

    Article  PubMed  Google Scholar 

  • Keil, A., Müller, M. M., Gruber, T., Weinbruch, C., Stolarova, M., & Elbert, T. (2001). Effects of emotional arousal in the cerebral hemispheres: A study of oscillatory brain activity and event-related potentials. Clinical Neurophysiology, 112, 2057–2068.

    Article  PubMed  Google Scholar 

  • Kim, H. S., & Petrakis, E. (1998). Visuoperceptual speed of karate practitioners at three levels of skill. Perceptual and Motor Skills, 87, 96–98.

    Article  PubMed  Google Scholar 

  • Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.

    Article  PubMed  Google Scholar 

  • Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.

    Article  PubMed  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  PubMed  Google Scholar 

  • Klimesch, W., & Doppelmayr, M. (2001). High frequency alpha and intelligence. Paper presented at the 10th biennial meeting of ISSID, Edinburgh.

    Google Scholar 

  • Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instructional manual. Technical report A-6. Bainesville, FL: University of Florida.

    Google Scholar 

  • Lehtovirta, M., Partanen, J., Kononen, M., Soininen, H., Helisalmi, S., Mannermaa, A., et al. (1996). Spectral analysis of EEG in Alzheimer’s disease: Relation to apolipoprotein E polymorphism. Neurobiology of Aging, 17, 523–526.

    Article  PubMed  Google Scholar 

  • Lindholm, T., Lehtinen, V., Hyyppa, M. T., & Puukka, P. (1990). Alexithymic features in relation to the dexamethasone suppression test in a Finnish population sample. American Journal of Psychiatry, 147, 1216–1219.

    PubMed  Google Scholar 

  • Linn, M. C., & Peterson, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.

    Article  PubMed  Google Scholar 

  • Lutzenberger, W., Birbaumer, N., Flor, H., Rockstroh, B., & Elbert, T. (1992). Dimensional analysis of the human EEG and intelligence. Neuroscience Letters, 143, 10–14.

    Article  PubMed  Google Scholar 

  • Lynn, R., & Irwing, P. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32, 481–498.

    Article  Google Scholar 

  • Mackintosh, N. J., & Bennett, E. S. (2005). What do Raven’s matrices measure? An analysis in terms of sex differences. Intelligence, 33, 663–664.

    Article  Google Scholar 

  • Maitland, S. B., Herlitz, A., Nyberg, L., Backman, L., & Nilsson, L. G. (2004). Selective sex differences in declarative memory. Memory and Cognition, 32, 1160–1169.

    Article  Google Scholar 

  • Mansour, C. S., Haier, R. J., & Buchsbaum, M. S. (1996). Gender comparison of cerebral glucose metabolic rate in healthy adults during a cognitive task. Personality and Individual Differences, 20, 183–191.

    Article  Google Scholar 

  • Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23, 337–341.

    Article  PubMed  Google Scholar 

  • Mayer, J. D., Caruso, D. R., & Salovey, P. (2000). Emotional intelligence meets traditional standards for an intelligence. Intelligence, 27, 267–298.

    Article  Google Scholar 

  • Mayer, J. D., Salovey, P., & Caruso, D. R. (2002). Mayer-Salovey-Caruso emotional intelligence test (MSCEIT). Toronto: MHS.

    Google Scholar 

  • McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126, 424–453.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., Alves, S. E., Bulloch, K., & Weiland, N. G. (1997). Ovarian steroids and the brain: Implication for cognition and aging. Neurology, 48, 8–15.

    Article  Google Scholar 

  • McGee, M. (1979). Human spatial abilities: Psychometric studies and environmental, generic, hormonal, and neurological influences. Psychological Bulletin, 86, 889–917.

    Article  PubMed  Google Scholar 

  • Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: Effects of task complexity and sex. Personality and Individual Differences, 35, 811–827.

    Article  Google Scholar 

  • Neubauer, A. C., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain – IQ relationship. Intelligence, 30, 515–536.

    Article  Google Scholar 

  • Neubauer, V., Freudenthaler, H. H., & Pfurtscheller, G. (1995). Intelligence and spatiotemporal patterns of event-related desynchronization. Intelligence, 3, 249–266.

    Article  Google Scholar 

  • Neubauer, A. C., Sange, G., & Pfurtscheller, G. (1999). Psychometric intelligence and event-related desynchronization during performance of a letter matching task. In G. Pfurtscheller & F. H. da Silva Lopes (Eds.), Handbook of electroencephalography and clinical neuropsychology. Event-related desynchronization (Vol. 6, pp. 219–232). Amsterdam: Elsevier.

    Google Scholar 

  • Nunez, P. L., Wingeier, B. M., & Silberstein, R. B. (2001). Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks. Human Brain Mapping, 13, 125–164.

    Article  PubMed  Google Scholar 

  • Nyberg, L., Habib, R., & Herlitz, A. (2000). Brain activation during episodic memory retrieval: Sex differences. Acta Psychologica, 105, 181–194.

    Article  PubMed  Google Scholar 

  • Nyborg, H. (1994). The neuropsychology of sex-related differences in brain and specific abilities: Hormones, developmental dynamics and new paradigm. In P. A. Vernon (Ed.), The neuropsychology of individual differences (pp. 59–113). London: Academic Press INC.

    Google Scholar 

  • Nyborg, H. (2005). Sex-related differences in general intelligence g, brain size, and social status. Personality and Individual Differences, 39, 497–509.

    Article  Google Scholar 

  • O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 4, 415–443.

    Article  Google Scholar 

  • Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (1989). The alexithymia construct: Relationship with sociodemographic variables and intelligence. Comparative Psychiatry, 30, 434–441.

    Article  Google Scholar 

  • Parker, J. D. A., Taylor, G. J., & Bagby, R. M. (2003). The 20-item Toronto alexithymia scale III. Reliability and factorial validity in a community population. Journal of Psychosomatic Research, 55, 269–275.

    Article  PubMed  Google Scholar 

  • Petrides, K. V., & Furnham, A. (2000). Gender differences in measured and self-estimated trait emotional intelligence. Sex Roles, 42, 449–461.

    Article  Google Scholar 

  • Pfleiderer, B., Ohrmann, A. P., Suslow, B. T., Wolgast, B. M., Gerlach, B. A. L., Heindela, C. W., et al. (2004). N-acetylaspartate levels of left frontal cortex are associated with verbal intelligence in women but not in men: A proton magnetic resonance spectroscopy study. Neuroscience, 123, 1053–1058.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G. (1999). Quantification of ERD and ERS in the time domain. In G. Pfurtscheller & F. H. da Silva Lopes (Eds.), Handbook of electroencephalography and clinical neuropsychology, event-related desynchronization (Vol. 6, pp. 89–105). Elsevier: Amsterdam.

    Google Scholar 

  • Posthuma, D., Neale, M. C., Boomsma, D. I., & de Geus, E. J. C. (2000). Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation. Behavior Genetics, 3, 567–579.

    Google Scholar 

  • Pulvermüller, F., Birbaumer, N., Lutzenberger, W., & Mohr, B. (1997). High frequency brain activity: Its possible role in attention, perception and language processing. Progress in Neurobiology, 52, 427–445.

    Article  PubMed  Google Scholar 

  • Radilovà, J., Figar, S., & Radil, T. (1984). Emotional states influence the visual evoked-potentials. Activitas Nervosa Superior, 26, 159–160.

    Google Scholar 

  • Razoumnikova, O. (2003). Interaction of personality and intelligence factors in cortex activity modulation. Personality and Individual Differences, 35, 135–162.

    Article  Google Scholar 

  • Reed, T. E., Vernon, P. A., & Johnson, A. M. (2004). Sex difference in brain nerve conduction velocity in normal humans. Neuropsychologia, 42, 1709–1714.

    Article  PubMed  Google Scholar 

  • Rescher, B., & Rappelsberger, P. (1999). Gender dependent EEG-changes during a mental rotation task. International Journal of Psychophysiology, 33, 209–222.

    Article  PubMed  Google Scholar 

  • Rooy, D. L., Alonso, A., & Viswesvaran, C. (2005). Group differences in emotional intelligence scores: Theoretical and practical implications. Personality and Individual Differences, 38, 689–700.

    Article  Google Scholar 

  • Salminen, J. K., Saarijarvi, S., Aarela, E., Toikka, T., & Kauhanen, J. (1999). Prevalence of alexithymia and its association with sociodemographic variables in the general population of Finland. Journal of Psychosomatic Research, 46, 75–82.

    Article  PubMed  Google Scholar 

  • Schmithorst, V. J., & Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. NeuroImage, 35, 406–419.

    Article  PubMed  Google Scholar 

  • Schmithorst, V. J., Holland, S. K., & Plante, E. (2006). Cognitive modules utilized for narrative comprehension in children: A functional magnetic resonance imaging study. NeuroImage, 29, 254–266.

    Article  PubMed  Google Scholar 

  • Schulte, M. J., Ree, M. J., & Carretta, T. R. (2004). Emotional intelligence: Not much more than g and personality. Personality and Individual Differences, 37, 1059–1068.

    Article  Google Scholar 

  • Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.

    Article  PubMed  Google Scholar 

  • Skrandies, W., Reik, P., & Kunze, Ch. (1999). Topography of evoked brain activity during mental arithmetic and language tasks: Sex differences. Neuropsychologia, 37, 421–430.

    Article  PubMed  Google Scholar 

  • Smith, N. K., Cacioppo, J. T., Larsen, J. T., & Chatrand, T. L. (2003). May I have your attention, please: Electrocortical responses to positive and negative stimuli. Neuropsychologia, 41, 171–183.

    Article  PubMed  Google Scholar 

  • Strüber, D., Basar-Eroglu, C., Hoff, E., & Stadler, M. (2000). Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. International Journal of Psychophysiology, 38, 243–252.

    Article  PubMed  Google Scholar 

  • Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory γ activity in humans and its role in object representation. Trends in Neurosciences, 19, 151–162.

    Google Scholar 

  • Thatcher, R. W., Toro, C., Pflieger, M. E., & Hallet, M. (1994). Human neural network dynamics using multimodal registration of EEG, PET and MRI. In R. W. Thatcher, M. Hallet, & T. Zeffiro (Eds.), Functional neuroimaging: Technical foundations (pp. 259–267). Orlando FL: Academic Press.

    Google Scholar 

  • Thorndike, E. L. (1920). Intelligence and its use. Harper’s Magazine, 140, 227–235.

    Google Scholar 

  • Thorndike, R. L., & Stein, S. (1937). An evaluation of the attempts to measure social intelligence. Psychological Bulletin, 34, 275–285.

    Article  Google Scholar 

  • Tyler, L. E. (1965). The psychology of human differences (3rd ed.). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Vogel, S. (1990). Gender differences in intelligence, language, visuo-motor abilities and academic achievement in students with learning disabilities: A review of the literature. Journal of Learning Disability, 23, 44–52.

    Article  Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial ability: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). WAIS-R manual: Wechsler adult intelligence scale-revised. New York: Psychological Corporation.

    Google Scholar 

  • Weiss, E., Siedentopf, C. M., Hofer, A., Deisenhammer, E. A., Hoptman, M. J., Kremser, C., et al. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344, 169–172.

    Article  PubMed  Google Scholar 

  • Weitz, S. (1974). Nonverbal communication: Readings with commentary. New York: Oxford University Press.

    Google Scholar 

  • Wesman, A. G. (1949). Separation of sex groups in test reporting. Journal of Educational Psychology, 40, 223–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Jaušovec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jaušovec, N., Jaušovec, K. (2010). Emotional Intelligence and Gender: A Neurophysiological Perspective. In: Gruszka, A., Matthews, G., Szymura, B. (eds) Handbook of Individual Differences in Cognition. The Springer Series on Human Exceptionality. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1210-7_7

Download citation

Publish with us

Policies and ethics