Skip to main content

Experimental Techniques and Data Treatment

  • Chapter
  • First Online:
  • 6053 Accesses

Abstract

Chapter 3 treats the fabrication techniques, characterization schemes and data treatment methods that are very general for the study of optical metamaterials. The chapter starts with a broad overview of fabrication processes commonly used for quasi-two-dimensional optical metamaterials, including electron beam lithography, focused ion beam milling, interference lithography and nanoimprint lithography. We then discuss a few techniques for truly three-dimensional metal-dielectric nanostructures. We also present commonly used characterization methods for testing the spectral properties of optical metamaterials. Finally, in the last section we discuss a technique for the extraction of the homogenized effective parameters from experimental observables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boltasseva A, Shalaev VM (2008) Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2:1–17

    Article  ADS  Google Scholar 

  2. Shalaev VM, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

    Article  ADS  Google Scholar 

  3. Cai WS, Chettiar UK, Yuan HK, de Silva VC, Kildishev AV, Drachev VP, Shalaev VM (2007) Metamagnetics with rainbow colors. Opt Express 15:3333–3341

    Article  ADS  Google Scholar 

  4. Plum E, Fedotov VA, Schwanecke AS, Zheludev NI, Chen Y (2007) Giant optical gyrotropy due to electromagnetic coupling. Appl Phys Lett 90:223113

    Article  ADS  Google Scholar 

  5. Enkrich C, Perez-Willard R, Gerthsen D, Zhou JF, Koschny T, Soukoulis CM, Wegener M, Linden S (2005) Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials. Adv Mat 17:2547–2549

    Article  Google Scholar 

  6. Zhang S, Fan WJ, Minhas BK, Frauenglass A, Malloy KJ, Brueck SRJ (2005) Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys Rev Lett 94:037402

    Article  ADS  Google Scholar 

  7. Zhang S, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2005) Experimental demonstration of near-infrared negative-index metamaterials. Phys Rev Lett 95:137404

    Article  ADS  Google Scholar 

  8. Feth N, Enkrich C, Wegener M, Linden S (2007) Large-area magnetic metamaterials via compact interference lithography. Opt Express 15:501–507

    Article  ADS  Google Scholar 

  9. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mat 19:495–513

    Article  Google Scholar 

  10. Wu W, Kim E, Ponizovskaya E, Liu Y, Yu Z, Fang N, Shen YR, Bratkovsky AM, Tong W, Sun C, Zhang X, Wang SY, Williams RS (2007) Optical metamaterials at near and mid-IR range fabricated by nanoimprint lithography. Appl Phys A 87:143–150

    Article  ADS  Google Scholar 

  11. Wu W, Yu ZN, Wang SY, Williams RS, Liu YM, Sun C, Zhang X, Kim E, Shen YR, Fang NX (2007) Midinfrared metamaterials fabricated by nanoimprint lithography. Appl Phys Lett 90:063107

    Article  ADS  Google Scholar 

  12. Chen YF, Tao JR, Zhao XZ, Cui Z, Schwanecke AS, Zheludev NI (2005) Nanoimprint lithography for planar chiral photonic meta-materials. Microelectron Eng 78–79:612–617

    Article  Google Scholar 

  13. Chettiar UK, Xiao S, Kildishev AV, Cai W, Yuan HK, Drachey VP, Shalaev VM (2008) Optical metamagnetism and negative-index metamaterials. MRS Bull 33:921–926

    Google Scholar 

  14. Zhang SA, Fan WJ, Panoiu NC, Malloy KJ, Osgood RM, Brueck SRJ (2006) Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks. Opt Express 14:6778–6787

    Article  ADS  Google Scholar 

  15. Dolling G, Wegener M, Linden S (2007) Realization of a three-functional-layer negative-index photonic metamaterial. Opt Lett 32:551–553

    Article  ADS  Google Scholar 

  16. Liu N, Guo HC, Fu LW, Kaiser S, Schweizer H, Giessen H (2008) Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7:31–37

    Article  ADS  Google Scholar 

  17. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379

    Article  ADS  Google Scholar 

  18. Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices – micromachines can be created with higher resolution using two-photon absorption. Nature 412:697–698

    Article  ADS  Google Scholar 

  19. Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl Phys Lett 88:083110

    Article  ADS  Google Scholar 

  20. Takeyasu N, Tanaka T, Kawata S (2008) Fabrication of 3D metal/polymer microstructures by site-selective metal coating. Appl Phys A 90:205–209

    Article  ADS  Google Scholar 

  21. Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809

    Article  ADS  Google Scholar 

  22. Farrer RA, LaFratta CN, Li LJ, Praino J, Naughton MJ, Saleh BEA, Teich MC, Fourkas JT (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128: 1796–1797

    Article  Google Scholar 

  23. Rill MS, Plet C, Thiel M, Staude I, Von Freymann G, Linden S, Wegener M (2008) Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat Mater 7:543–546

    Article  ADS  Google Scholar 

  24. Li LJ, Fourkas JT (2007) Multiphoton polymerization. Mater Today 10:30–37

    Article  Google Scholar 

  25. Griffith S, Mondol M, Kong DS, Jacobson JM (2002) Nanostructure fabrication by direct electron-beam writing of nanoparticles. J Vac Sci Technol B 20:2768–2772

    Article  Google Scholar 

  26. Morita T, Kondo K, Hoshino T, Kaito T, Fujita J, Ichihashi T, Ishida M, Ochiai Y, Tajima T, Matsui S (2004) Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition. J Vac Sci Technol B 22:3137–3142

    Article  Google Scholar 

  27. Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ (2000) Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404:53–56

    Article  ADS  Google Scholar 

  28. Ehrfeld W, Lehr H (1995) Deep X-ray-lithography for the production of 3-dimensional microstructures from metals, polymers and ceramics. Radiat Phys Chem 45:349–365

    Article  ADS  Google Scholar 

  29. Kehagias N, Reboud V, Chansin G, Zelsmann M, Jeppesen C, Schuster C, Kubenz M, Reuther F, Gruetzner G, Torres CMS (2007) Reverse-contact UV nanoimprint lithography for multilayered structure fabrication. Nanotechnology 18:175303

    Article  ADS  Google Scholar 

  30. Busch K, von Freymann G, Linden S, Mingaleev SF, Tkeshelashvili L, Wegener M (2007) Periodic nanostructures for photonics. Phys Rep 444:101–202

    Article  ADS  Google Scholar 

  31. Galisteo JF, Garcia-Santamaria F, Golmayo D, Juarez BH, Lopez C, Palacios E (2005) Self-assembly approach to optical metamaterials. J Opt A Pure Appl. Opt. 7:S244–S254

    Article  ADS  Google Scholar 

  32. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405:437–440

    Article  ADS  Google Scholar 

  33. Chen Z, Zhan P, Wang ZL, Zhang JH, Zhang WY, Ming NB, Chan CT, Sheng P (2004) Two- and three-dimensional ordered structures of hollow silver spheres prepared by colloidal crystal templating. Adv Mat 16:417–422

    Article  Google Scholar 

  34. Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  ADS  Google Scholar 

  35. Yao J, Liu ZW, Liu YM, Wang Y, Sun C, Bartal G, Stacy AM, Zhang X (2008) Optical negative refraction in bulk metamaterials of nanowires. Science 321:930

    Article  ADS  Google Scholar 

  36. Kim E, Shen YR, Wu W, Ponizovskaya E, Yu Z, Bratkovsky AM, Wang SY, Williams RS (2007) Modulation of negative index metamaterials in the near-IR range. Appl. Phys. Lett. 91:173105

    Article  ADS  Google Scholar 

  37. Drachev VP, Cai W, Chettiar U, Yuan HK, Sarychev AK, Kildishev AV, Klimeck G, Shalaev VM (2006) Experimental verification of an optical negative-index material. Laser Phys Lett 3:49–55

    Article  ADS  Google Scholar 

  38. Kildishev AV, Cai WS, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Shalaev VM (2006) Negative refractive index in optics of metal-dielectric composites. J Opt Soc Am B 23:423–433

    Article  ADS  Google Scholar 

  39. Dolling G, Enkrich C, Wegener M, Soukoulis CM, Linden S (2006) Simultaneous negative phase and group velocity of light in a metamaterial. Science 312:892–894

    Article  ADS  Google Scholar 

  40. Dolling G, Wegener M, Soukoulis CM, Linden S (2007) Negative-index metamaterial at 780 nm wavelength. Opt Lett 32:53–55

    Article  ADS  Google Scholar 

  41. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496

    Article  ADS  Google Scholar 

  42. Nilsson PO (1968) Determination of optical constants from intensity measurements at normal incidence. Appl Opt 7:435–442

    Article  ADS  Google Scholar 

  43. Heavens OS (1955) Optical properties of thin solid films. Butterworths, London

    Google Scholar 

  44. Roessler DM (1965) Kramers–Kronig analysis of reflection data. Br J Appl Phys 16: 1119–1123

    Article  ADS  Google Scholar 

  45. Smith DR, Schultz S, Markos P, Soukoulis CM (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  ADS  Google Scholar 

  46. Markos P, Soukoulis CM (2003) Transmission properties and effective electromagnetic parameters of double negative metamaterials. Opt Express 11:649–661

    Article  ADS  Google Scholar 

  47. Ziolkowski RW (2003) Design, fabrication, and testing of double negative metamaterials. IEEE Trans Antennas Propag 51:1516–1529

    Article  ADS  Google Scholar 

  48. Chen XD, Grzegorczyk TM, Wu BI, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70:016608

    Article  ADS  Google Scholar 

  49. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617

    Article  ADS  Google Scholar 

  50. Koschny T, Markos P, Smith DR, Soukoulis CM (2003) Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys Rev E 68:065602

    Article  ADS  Google Scholar 

  51. Kyriazidou CA, Contopanagos HF, Merrill WM, Alexopoulos NG (2000) Artificial versus natural crystals: effective wave impedance of printed photonic bandgap materials. IEEE Trans Antennas Propag 48:95–106

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. Wolf E, Habashy T (1993) Invisible bodies and uniqueness of the inverse scattering problem. J Mod Opt 40:785–792

    Article  ADS  Google Scholar 

  53. Chen X, Wu BI, Kong JA, Grzegorczyk TM (2005) Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys Rev E 71:046610

    Article  ADS  Google Scholar 

  54. Menzel C, Rockstuhl C, Paul T, Lederer F (2008) Retrieving effective parameters for quasiplanar chiral metamaterials. Appl Phys Lett 93:233106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Cai or V. Shalaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cai, W., Shalaev, V. (2010). Experimental Techniques and Data Treatment. In: Optical Metamaterials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1151-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1151-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1150-6

  • Online ISBN: 978-1-4419-1151-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics