Skip to main content

Roles of Metal Ions in RNase P Catalysis

  • Chapter
  • First Online:

Part of the book series: Protein Reviews ((PRON,volume 10))

Abstract

As for other RNA, RNase P with its catalytic RNA subunit requires metal(II)-ions for function. Approximately 100 metal(II)-ions bind to the 400 residues long RNA and several to the precursor substrate, e.g., roughly 25–30 to a tRNA precursor substrate. To understand the function and the reaction catalyzed by RNase P an important task is to identify and characterize metal(II)-ions or metal binding sites that contribute to folding of the RNAs, interaction with the protein subunit(s), substrate binding and chemistry of cleavage. Over the years, different methods have been explored to extract information about how, were and when metal(II)-ions bind to RNA. In this chapter, I will discuss our current understanding of RNase P and metal(II)-ions and how this knowledge can be utilized to search for new candidate drugs referred to as metal mimics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beebe JA, Kurz JC, Fierke CA (1996) Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry 35:10493–10505

    Article  PubMed  CAS  Google Scholar 

  • Brännvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction. J Mol Biol 292:53–63

    Article  PubMed  Google Scholar 

  • Brännvall M, Kirsebom LA (2001) Metal ion cooperativity in ribozyme cleavage of RNA. Proc Natl Acad Sci U S A 98:12943–12947

    Article  PubMed  Google Scholar 

  • Brännvall M, Kirsebom LA (2005) Complexity in the orchestration of the chemical groups near different cleavage sites in RNase P RNA mediated cleavage. J Mol Biol 351:251–257

    Article  PubMed  CAS  Google Scholar 

  • Brännvall M, Mikkelesen NE, Kirsebom LA (2001) Monitoring the structure of Escherichia coli RNase P RNA in the presence of various metal ion. Nucl Acids Res 29:1426–1432

    Article  PubMed  Google Scholar 

  • Brännvall M, Pettersson BMF, Kirsebom LA (2002) The residue immediately upstream of the RNase P cleavage site is a positive determinant. Biochemie 84:693–703

    Article  Google Scholar 

  • Brännvall M, Pettersson BMF, Kirsebom LA (2003) Importance of the +73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination. J Mol Biol 325:697–709

    Article  PubMed  Google Scholar 

  • Brännvall M, Kikovska E, Kirsebom LA (2004) Cross talk in RNase P RNA mediated cleavage. Nucl Acids Res 32:5418–5429

    Article  PubMed  CAS  Google Scholar 

  • Brännvall M, Kikovska E, Wu S, Kirsebom LA (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372:1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Brown RS, Dewan JC, Klug A (1985) Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry 24:4785–4801

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30 S ribosomal subunit and its interaction with antibiotics. Nature 407:340–348

    Article  PubMed  CAS  Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2004) Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis. Biochemistry 43:10547–10559

    Article  PubMed  CAS  Google Scholar 

  • Chang SE, Smith JD (1973) Structural studies on a tyrosine tRNA precursor. Nat New Biol 246:165–168

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Li X, Gegenheimer P (1997) Ribonuclease P catalysis requires Mg2+ coordinated to the pro-Rp oxygen of the scissile bond. Biochemistry 36:2425–2438

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Smith KMJ, Perera N, Harris ME (2006) The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA 12:1463–1467

    Article  PubMed  CAS  Google Scholar 

  • Ciesiolka J, Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1994) Lead-ion-induced cleavage of RNase P RNA. Eur J Biochem 219:49–56

    Article  PubMed  CAS  Google Scholar 

  • Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37:9409–9416

    Article  PubMed  CAS  Google Scholar 

  • Crary SM, Kurz JC, Fierke CA (2002) Specific phosphorothioate substitutions probe the active site of Bacillus subtilis ribonuclease P. RNA 8:933–947

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Seno T, Söll DG (1972) Is there a discriminator site in transfer RNA? Proc Natl Acad Sci U S A 69:3063–3067

    Article  PubMed  CAS  Google Scholar 

  • Cuzic S, Hartmann RK (2005) Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor. Nucl Acids Res 33:2464–2474

    Article  PubMed  CAS  Google Scholar 

  • Cuzic S, Heidemann KA, Wöhnert J, Hartmann RK (2008) Escherichia coli RNase P RNA: substrate ribose at G+1, but not nucleotide -1/+73 base pairing, affect the transition state for cleavage chemistry. J Mol Biol 379:1–8

    Google Scholar 

  • Davies J (1994) New pathogens and old resistance genes. Microbiologica 10:9–12

    CAS  Google Scholar 

  • Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–240

    Article  PubMed  CAS  Google Scholar 

  • Davies J, von Ahsen U, Schroeder R (1993) Antibiotics and the RNA world: a role for low-molecular-weight effectors in biochemical evolution? In: Gesteland RF, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 185–204

    Google Scholar 

  • Day-Storms JJ, Niranjanakumari S, Fierke CA (2004) Ionic interactions between P RNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA 10:1595–1608

    Article  PubMed  CAS  Google Scholar 

  • Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V (2002) Inhibition of bacterial RNase P by aminoglycoside–arginine conjugates. FEBS Lett 511:107–112

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Pan T, Sosnick TR (1999) Mg2 + -dependent folding of a large ribozyme without kinetic traps. Nat Struct Biol 6:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Feig AL, Uhlenbeck OC (1999) The role of metal ions in RNA biochemistry. In: Gesteland R, Cech T, Atkins J (eds) RNA world II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 287–319

    Google Scholar 

  • Forster AC, Altman S (1990) External guide sequences for an RNA enzyme. Science 249:783–786

    Google Scholar 

  • Frank DN, Pace NR (1997) In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A 94:14355–14360

    Article  PubMed  CAS  Google Scholar 

  • Gardiner KJ, Marsh TL, Pace NR (1985) Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem 260:5415–5419

    PubMed  CAS  Google Scholar 

  • Gaur RK, Krupp G (1993) Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucl Acids Res 21:21–26

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (2006) The RNA world, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Getz MM, Andrews AJ, Fierke CA, Al-Hashimi HM (2007) Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation. RNA 13:251–266

    Article  PubMed  CAS  Google Scholar 

  • Glemarec C, Kufel J, Földesi A, Maltseva T, Sandström A, Kirsebom LA, Chattopadhyaya J (1996) The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the ′NMR-window′ concept]. Nucl Acids Res 24:2022–2035

    Article  PubMed  CAS  Google Scholar 

  • Gopalan V, Altman S (2006) Ribonuclease P: structure and catalysis. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY, available only online http://rna.cshl.edu/

  • Gordon PE, Sontheimer EJ, Piccirilli JA (2000) Kinetic characterization of the second step of group II intron splicing: Role of metal ions and the cleavage site 2′-OH in catalysis. Biochemistry 39:12939–12952

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Altman S (1992) Reconstitution of enzymatic activity from fragments of M1 RNA. Proc Natl Acad Sci U S A 89:1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of riboNucleicease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Haydock K, Allen L, Altman S (1986) Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry 25:1509–1515

    Article  PubMed  CAS  Google Scholar 

  • Hansen A, Pfeiffer T, Zuleeg T, Limmer S, Ciesiolka J, Feltens R, Hartmann RK (2001) Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis. Mol Microbiol 41:131–143

    Article  PubMed  CAS  Google Scholar 

  • Hardt W-D, Hartmann RK (1996) Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA. J Mol Biol 259:422–433

    Article  PubMed  CAS  Google Scholar 

  • Hardt W-D, Warnecke JM, Erdmann VA, Hartmann RK (1995) Rp-phosphorothioate modifications in RNase P RNA that interfere with tRNA binding. EMBO J 14:2935–2944

    PubMed  CAS  Google Scholar 

  • Harris ME, Pace NR (1995) Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA 1:210–218

    PubMed  CAS  Google Scholar 

  • Hermann T (2003) Chemical and functional diversity of small molecule ligands for RNA. Biopolymers 70:4–18

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Westhof E (1998) Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J Mol Biol 276:903–912

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic M, Sanchez R, Altman S, Gopalan V (2002) Elucidation of structure–function relationships in the protein subunit of bacterial RNase P using a genetic complementation approach. Nucl Acids Res 30:5065–5073

    Article  PubMed  CAS  Google Scholar 

  • Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: Cleavage by Mg2+ in 15-year old crystals. J Mol Biol 301:401–414

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto SA, Sudhahar CG, Hatfield CL, Sun J, Behrman EJ, Gopalan V (2008) Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucl Acids Res 36:697–704

    Article  PubMed  CAS  Google Scholar 

  • Kaye NM, Zahler NH, Christian EL, Harris ME (2002a) Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA. J Mol Biol 324:429–442

    Article  PubMed  CAS  Google Scholar 

  • Kaye NM, Christian EL, Harris ME (2002b) NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1–P4 multihelix junction contributes to catalysis. Biochemistry 41:4533–4545

    Article  PubMed  CAS  Google Scholar 

  • Kazakov S, Altman S (1991) Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A 88:9193–9197

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev AV, Krivenko AA, Pace NR (2009) Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. RNA 15:266–276

    Article  PubMed  CAS  Google Scholar 

  • Kent O, Chaulk SG, MacMillan AM (2000) Kinetic analysis of the M1 RNA folding pathway. J Mol Biol 304:699–705

    Article  PubMed  CAS  Google Scholar 

  • Kikovska E, Brännvall M, Kufel J, Kirsebom LA (2005a) Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site. Nucl Acids Res 33:2012–2021

    Article  PubMed  CAS  Google Scholar 

  • Kikovska E, Mikkelsen N-E, Kirsebom LA (2005b) The naturally trans-acting ribozyme RNase P RNA has leadzyme properties. Nucl Acids Res 33:6920–6930

    Article  PubMed  CAS  Google Scholar 

  • Kikovska E, Brännvall M, Kirsebom LA (2006) The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 359:572–584

    Article  PubMed  CAS  Google Scholar 

  • Kikovska E, Svärd SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 104:2062–2067

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom LA, Virtanen A, Mikkelsen NE (2006) Aminoglycoside interaction with RNA and nucleases. In: Barciszewski J, Brosius J, Erdmann VA (eds) Handbok Exp Pharmacol 173 RNA towards medicine. Wiley Press, pp 73–96

    Google Scholar 

  • Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom LA, Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13:4870–4876

    PubMed  CAS  Google Scholar 

  • Kirsebom LA, Trobro S (2009) RNase P RNA-mediated cleavage. IUBMB Life 61:189–200

    Article  PubMed  CAS  Google Scholar 

  • Kleineidam RG, Pitulle C, Sproat B, Krupp G (1993) Efficient cleavage of pre-tRNAs by E. coli RNase P RNA requires the 2′-hydroxyl of the ribose at the cleavage site. Nucl Acids Res 21:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44:3249–3256

    Google Scholar 

  • Krzyzosiak WJ, Marciniec T, Wiewiórowski M, Romby P, Ebel J, Giegé R (1988) Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27:5771–5777

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Kirsebom LA (1994) Cleavage site selection by M1 RNA the catalytic subunit of Escherichia coli RNase P, is influenced by pH. J Mol Biol 244:511–521

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Kirsebom LA (1996) Residues in Escherichia coli RNase P RNA important for cleavage site selection and divalent metal ion binding. J Mol Biol 263:685–698

    Article  PubMed  CAS  Google Scholar 

  • Kufel J, Kirsebom LA (1998) The P15-loop of Escherichia coli RNase P RNA is an autonomous divalent metal ion binding domain. RNA 4:777–788

    Google Scholar 

  • Kurz JC, Fierke CA (2002) The affinity of magnesium binding sites in the Bacillus subtilis RNase P-pre-tRNA complex is enhanced by the protein subunit. Biochemistry 41:9545–9558

    Article  PubMed  CAS  Google Scholar 

  • Lindell M, Brännvall M, Wagner EGH, Kirsebom LA (2005) Lead(II) cleavage analysis of RNase P RNA in vivo. RNA 11:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2:551–563

    PubMed  CAS  Google Scholar 

  • Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 36:6317–6325

    Article  PubMed  CAS  Google Scholar 

  • Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37:10126–10133

    Article  PubMed  CAS  Google Scholar 

  • Loria A, Niranjanakumari S, Fierke CA, Pan T (1998) Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37:15466–15473

    Article  PubMed  CAS  Google Scholar 

  • Mans RM, Guerrier-Takada C, Altman S, Pleij CW (1990) Interaction of RNase P from Escherichia coli with pseudoknotted structures in viral RNAs. Nucl Acids Res 18:3479–3487

    Google Scholar 

  • Marciniec T, Ciesiołka J, Wrzesiński J, Wiewiórowski M, Krzyzosiak WJ (1989) Specificity and mechanism of the cleavages induced in yeast tRNAPhe by magnesium ions. Acta Biochim Polon 36:115–122

    Google Scholar 

  • Massire C, Jaeger L, Westhof E (1998) Derivation of the thres-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol 279:773–793

    Google Scholar 

  • Mattsson JG, Svärd SG, Kirsebom LA (1994) Characterization of the Borrelia burgdorferi RNase P RNA gene reveals a novel tertiary interaction. J Mol Biol 241:1–6

    Article  PubMed  CAS  Google Scholar 

  • McClain WH, Guerrier-Takada C, Altman S (1987) Model substrates for an RNA enzyme. Science 238:527–530

    Google Scholar 

  • Mikkelsen N-E, Brännvall M, Virtanen A, Kirsebom LA (1999) Inhibition of RNase P RNA cleavage by aminoglycosides. Proc Natl Acad Sci U S A 96:6155–6160

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen N-E, Johansson K, Virtanen A, Kirsebom LA (2001) Aminoglycoside binding displaces a divalent metal ion in a tRNA–neomycin B complex. Nat Struct Biol 8:510–514

    Article  PubMed  CAS  Google Scholar 

  • Misra VK, Draper DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48:113–135

    Article  PubMed  CAS  Google Scholar 

  • Murphy FL, Cech TR (1993) An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32:5291–5300

    Article  PubMed  CAS  Google Scholar 

  • Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217

    Article  PubMed  CAS  Google Scholar 

  • Paisley T, Van Tuyle GC (1994) The processing of wild type and mutant forms of rat nuclear pre-tRNALys by homologous RNase P. Nucl Acids Res 22:3347–3353

    Article  PubMed  CAS  Google Scholar 

  • Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34:902–909

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Jakacka M (1996) Multiple substrate binding sites in the ribozyme from Bacillus subtilis RNase P. EMBO J 15:2249–2255

    PubMed  CAS  Google Scholar 

  • Pannucci JA, Haas ES, Hall TA, Brown JW (1999) RNase P RNAs from some archaea are catalytically active. Proc Natl Acad Sci U S A 96:7803–7808

    Google Scholar 

  • Perreault J-P, Altman S (1992) Important 2′-hydroxyl groups in model substrates for M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli. J Mol Biol 226:399–409

    Article  PubMed  CAS  Google Scholar 

  • Perreault J-P, Altman S (1993) Pathway of activation by magnesium ions of substrates for the catalytic subunit of RNase P from Escherichia coli. J Mol Biol 230:750–756

    Article  PubMed  CAS  Google Scholar 

  • Persson T, Cuzic S, Hartmann RK (2003) Catalysis by RNase P RNA: unique features and unprecedented active site plasticity. J Biol Chem 278:43394–43401

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Tekos A, Warnecke JM, Drainas D, Engelke DR, Séraphin B, Hartmann RK (2000) Effects of phosphorothioate modifications on precursor tRNA processing by eukaryotic RNase P enzymes. J Mol Biol 298:559–565

    Article  PubMed  CAS  Google Scholar 

  • Reich C, Olsen GJ, Pace B, Pace NR (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239:178–181

    Article  PubMed  CAS  Google Scholar 

  • Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J Biol Chem 247:5243–5251

    PubMed  CAS  Google Scholar 

  • Sampson JR, Sullivan FX, Behlen AB, DiRenzo AB, Uhlenbeck OC (1987) Characterization of two RNA-catalyzed RNA cleavage reactions. Cold Spring Harbor Symp Quant Biol 52:267–275

    PubMed  CAS  Google Scholar 

  • Schlegl J, Fürste JP, Bald R, Erdmann VA, Hartmann RK (1992) Cleavage efficiences of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus. Nucl Acids Res 20:5963–5970

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M (2004) Change of RNase P RNA function by single base mutation correlates with perturbation of metal ion binding in P4 as determined by NMR spectroscopy. Nucl Acids Res 32:6358–6366

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M, Tinoco I Jr (2000) Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA 6:1212–1225

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6:1091–1105

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Pace NR (1993) Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry 32:5273–5281

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Burgin AB, Haas ES, Pace NR (1992) Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis. J Biol Chem 267:2429–2436

    PubMed  CAS  Google Scholar 

  • Sprinzl M, Vassilenko KS (2005) Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 33:D139–D140

    Article  PubMed  CAS  Google Scholar 

  • Stahley MR, Strobel SA (2005) Structural evidence for two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90:6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Summers JS, Shimko J, Freedman FL, Badger CT, Sturgess M (2002) Displacement of Mn2+ from RNA by K+, Mg2+, neomycin B, and an arginine-rich peptide: indirect detection of nucleic acid/ligand interactions using phosphorus relaxation enhancement. J Am Chem Soc 124:14934–149339

    Article  PubMed  CAS  Google Scholar 

  • Svärd SG, Kirsebom LA (1992) Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site. J Mol Biol 227:1019–1031

    Article  PubMed  Google Scholar 

  • Svärd SG, Mattsson JG, Johansson KE, Kirsebom LA (1994) Cloning and characterization of the RNase P RNA genes from two porcine mycoplasmas. Mol Microbiol 11:849–859

    Article  PubMed  Google Scholar 

  • Tallsjö A, Kirsebom LA (1992) Product release is a rate-limiting step during cleavage by the catalytic RNA subunit of Escherichia coli RNase P. Nucl Acids Res 21:51–57

    Article  Google Scholar 

  • Tallsjö A, Svärd SG, Kufel J, Kirsebom LA (1993) A novel tertiary interaction in M1 RNA, the catalytic subunit of Escherichia coli RNase P. Nucl Acids Res 21:3927–3933

    Article  PubMed  Google Scholar 

  • Tekos A, Tsagla A, Stathopoulos C, Drainas D (2000) Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett 485:71–75

    Article  PubMed  CAS  Google Scholar 

  • Thomas BC, Chamberlain J, Engelke DR, Gegenheimer P (2000) Evidence for an RNA-based catalytic mechanism in eukaryotic nuclear ribonuclease P. RNA 6:554–562

    Article  PubMed  CAS  Google Scholar 

  • Toor N, Rajashankar K, Keating KS, Pyle AM (2008) Structural basis for exon recognition by a group II intron. Nat Struct Mol Biol 15:1221–1222

    Article  PubMed  CAS  Google Scholar 

  • Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragón A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587

    Article  PubMed  CAS  Google Scholar 

  • Tsai H-Y, Pulukkunat DK, Woznick WK, Gopalan V (2006) Functional reconstitution and characterization of Pyrococcus furiosus RNase P. Proc Natl Acad Sci U S A 103:16147–16152

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2003) RNA as a drug target: the case of aminoglycosides. ChemBioChem 4:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Walker SC, Engelke DR (2006) Ribonuclease P: The evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 41:77–102

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2003) Antibiotics: actions, origins, resistance. ASM Press, Washington DC, USA

    Google Scholar 

  • Walter F, Vicens Q, Westhof E (1999) Aminoglycoside–RNA interactions. Curr Opin Chem Biol 3:694–704

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Murphy FL, Cech TR, Griffith JD (1994) Visualization of a tertiary structural domain of the Tetrahymena group I intron by electron microscopy. J Mol Biol 236:64–71

    Article  PubMed  CAS  Google Scholar 

  • Warnecke JM, Fürste JP, Hardt W-D, Erdmann VA, Hartmann RK (1996) Ribonuclease P (RNase P) RNA is converted to a Cd2 + -ribozyme by a single Rp-phosphorothioate modification in the precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci U S A 93:8924–8928

    Article  PubMed  CAS  Google Scholar 

  • Warnecke JM, Held R, Busch S, Hartmann RK (1999) Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol 290:433–445

    Article  PubMed  CAS  Google Scholar 

  • Warnecke JM, Sontheimer EJ, Piccirilli JA, Hartmann RK (2000) Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3′-S-phosphorothiolate internucleotide linkage. Nucl Acids Res 28:720–727

    Article  PubMed  CAS  Google Scholar 

  • Werner C, Krebs B, Keith G, Dirheimer G (1976) Specific cleavages of pure tRNAs by plumbous ions. Biochem Biophys Acta 432:161–175

    PubMed  CAS  Google Scholar 

  • Wintermeyer W, Zachau HG (1973) Mg2+-catalyzed specific splitting of tRNA. Biochim Biophys Acta 299:82–90

    PubMed  CAS  Google Scholar 

  • Yonath A, Bashan A (2004) Ribosomal crystallography: Initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Annu Rev Microbiol 58:233–251

    Article  PubMed  CAS  Google Scholar 

  • Zahler NH, Christian EL, Harris ME (2003) Recognition of the 5′ leader of pre-tRNA substrates by the active site of ribonuclease P. RNA 9:734–745

    Article  PubMed  CAS  Google Scholar 

  • Zahler NH, Sun L, Christian EL, Harris ME (2005) The pre-tRNA nucleotide base and 2′-hydroxyl at N(-1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 345:969–985

    Google Scholar 

  • Zarrinkar PP, Wang J, Williamson JR (1996) Slow folding kinetics of RNase P RNA. RNA 2:564–573

    PubMed  CAS  Google Scholar 

  • Zembower TR, Noskin GA, Postelnick MJ, Nguyen C, Peterson LR (1998) The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents 10:95–105

    Article  PubMed  CAS  Google Scholar 

  • Zito K, Hüttenhofer A, Pace NR (1993) Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure. Nucl Acids Res 21:5916–5920

    Article  PubMed  CAS  Google Scholar 

  • Zuleeg T, Hartmann RK, Kreutzer R, Limmer S (2001a) NMR spectroscopic evidence for Mn(2+)(Mg(2+)) binding to a precursor-tRNA microhelix near the potential RNase P cleavage site. J Mol Biol 305:181–189

    Article  PubMed  CAS  Google Scholar 

  • Zuleeg T, Hansen A, Pfeiffer T, Schubel H, Kreutzer R, Hartmann RK, Limmer S (2001b) Correlation between processing efficiency for ribonuclease P minimal substrates and conformation of the nucleotide −1 at the cleavage position. Biochemistry 40:3363–3369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank my colleagues over the years for a pleasant and stimulating working atmosphere, Dr. S. Dasgupta for comments on the manuscript, and Drs N.E. Mikkelsen and S. Trobro for help with the figures 1, 2 and 3. This work was supported by the Strategic Research Foundation, and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif A. Kirsebom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirsebom, L.A. (2010). Roles of Metal Ions in RNase P Catalysis. In: Liu, F., Altman, S. (eds) Ribonuclease P. Protein Reviews, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1142-1_7

Download citation

Publish with us

Policies and ethics