Skip to main content

RNase P as a Drug Target

  • Chapter
  • First Online:
Ribonuclease P

Part of the book series: Protein Reviews ((PRON,volume 10))

Abstract

The indispensability of RNase P for cell survival and its distinct architecture in Bacteria and Eukarya qualify this ribonucleoprotein enzyme as a potential drug target, although natural inhibitors of bacterial RNase P have not yet been identified. We report on the various attempts pursued so far to explore RNase P as a drug target. After an introduction into the topic and a brief historic synopsis, we will discuss antisense-based strategies, will detail recent advancements with respect to aminoglycoside-arginine conjugates, and will describe in silico-based high-throughput screening procedures that target the bacterial RNase P protein. The reader will be further updated on low molecular weight compounds that inhibit the activity of RNase P from the slime mold Dictyostelium, an amoebic eukaryote that might serve as a model system for some human pathogens. The chapter will finally be closed by mentioning ligands that bind to tRNA substrates as well as the macrolides which were reported to activate bacterial RNase P.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berchanski A, Lapidot A (2008) Bacterial RNase P RNA is a drug target for aminoglycoside-arginine conjugates. Bioconjug Chem 19:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Bichenkova EV, Sadat-Ebrahimi SE, Wilton AN et al (1998) Strong, specific, reversible binding ligands for transfer RNA: comparison by fluorescence and NMR spectroscopies with distamycin binding for a new structural class of ligand. Nucleosides Nucleotides Nucleic Acids 17:1651–1665

    Article  CAS  Google Scholar 

  • Brännvall M, Pettersson BM, Kirsebom LA (2003) Importance of the +73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination. J Mol Biol 325:697–709

    Article  PubMed  Google Scholar 

  • Childs JL, Poole AW, Turner DH (2003) Inhibition of Escherichia coli RNase P by oligonucleotide directed misfolding of RNA. RNA 9:1437–1445

    Article  CAS  PubMed  Google Scholar 

  • Egholm M, Buchardt O, Christensen L et al (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  • Eubank TD, Biswas R, Jovanovic M et al (2002) Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett 511:107–112

    Article  CAS  PubMed  Google Scholar 

  • Giordano T, Sturgess MA, Rao SJ (2006) Inhibitors of RNase P proteins as antibacterial compounds. Unites States Patent US 7,001,924 B2

    Google Scholar 

  • Gößringer M, Hartmann RK (2007) Function of heterologous and truncated RNase P proteins in Bacillus subtilis. Mol Microbiol 66:801–813

    Article  Google Scholar 

  • Gößringer M, Kretschmer-Kazemi Far R, Hartmann RK (2006) Analysis of RNase P protein (rnpA) expression in Bacillus subtilis utilizing strains with suppressible rnpA expression. J Bacteriol 188:6816–6823

    Article  PubMed  Google Scholar 

  • Good L, Awasthi SK, Dryselius R et al (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 19:360–364

    Article  CAS  PubMed  Google Scholar 

  • Gruegelsiepe H, Brandt O, Hartmann RK (2006) Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J Biol Chem 281:30613–30620

    Article  CAS  PubMed  Google Scholar 

  • Gruegelsiepe H, Willkomm DK, Goudinakis O et al (2003) Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects. Chembiochem 4:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Campbell FE, Sun L et al (2006) RNA-dependent folding and stabilization of C5 protein during assembly of the E. coli RNase P holoenzyme. J Mol Biol 360:190–203

    Article  CAS  PubMed  Google Scholar 

  • Henkels CH, Kurz JC, Fierke CA et al (2001) Linked folding and anion binding of the Bacillus subtilis ribonuclease P protein. Biochemistry 40:2777–2789

    Article  CAS  PubMed  Google Scholar 

  • Hermann T, Westhof E (1998) Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J Mol Biol 276:903–912

    Article  CAS  PubMed  Google Scholar 

  • Holzmann J, Frank P, Loffler E et al (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Bichenkova EV, Wilton AN et al (2001) Synthetic inhibitors of the processing of pretransfer RNA by the ribonuclease P ribozyme: enzyme inhibitors which act by binding to substrate. Biochemistry 40:603–608

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Rogert MC, Tanaka T et al (2005) Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. Biochim Biophys Acta 1730:47–55

    CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen MR, Damgaard CK, Andersen ES et al (2004) A genomic selection strategy to identify accessible and dimerization blocking targets in the 5′-UTR of HIV-1 RNA. Nucleic Acids Res 32:e67

    Article  PubMed  Google Scholar 

  • Jarrous N (2002) Human ribonuclease P: subunits, function, and intranuclear localization. RNA 8:1–7

    Article  CAS  PubMed  Google Scholar 

  • Jarrous N, Altman S (2001) Human ribonuclease P. Methods Enzymol 342:93–100

    Article  CAS  PubMed  Google Scholar 

  • Kalavrizioti D, Vourekas A, Tekos A et al (2003) Kinetics of inhibition of ribonuclease P activity by peptidyltransferase inhibitors. Effect of antibiotics on RNase P. Mol Biol Rep 30:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto SA, Sudhahar CG, Hatfield CL et al (2008) Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives. Nucleic Acids Res 36:697–704

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ et al (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 100:7497–7502

    Article  CAS  PubMed  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ et al (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102:13392–13397

    Article  CAS  PubMed  Google Scholar 

  • Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer-Kazemi Far R, Nedbal W, Sczakiel G (2001) Concepts to automate the theoretical design of effective antisense oligonucleotides. Bioinformatics 17:1058–1061

    Article  CAS  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Litovchick A, Lapidot A, Eisenstein M et al (2001) Neomycin B-arginine conjugate, a novel HIV-1 Tat antagonist: synthesis and anti-HIV activities. Biochemistry 40:15612–15623

    Article  CAS  PubMed  Google Scholar 

  • Massire C, Jaeger L, Westhof E (1998) Derivation of the three-dimensional aruchitecture of bacterial ribonuclease P RNAs from comparaive sequence analysis. J Mol Biol 279:773–793

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen NE, Brannvall M, Virtanen A et al (1999) Inhibition of RNase P RNA cleavage by aminoglycosides. Proc Natl Acad Sci U S A 96:6155–6160

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen NE, Johansson K, Virtanen A et al (2001) Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat Struct Biol 8:510–514

    Article  CAS  PubMed  Google Scholar 

  • Nekhotiaeva N, Awasthi SK, Nielsen PE et al (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10:652–659

    Article  CAS  PubMed  Google Scholar 

  • Niranjanakumari S, Day-Storms JJ, Ahmed M et al (2007) Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA 13:521–535

    Article  CAS  PubMed  Google Scholar 

  • Niranjanakumari S, Stams T, Crary SM et al (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217

    Article  CAS  PubMed  Google Scholar 

  • Nulf CJ, Corey D (2004) Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res 32:3792–3798 Erratum in: Nucleic Acids Res 2004, 32:4954

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Georgiou S, Tsambaos D et al (1998) Inhibition of ribonuclease P activity by retinoids. J Biol Chem 273:24375–24378

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Stathopoulos C et al (2000a) Modulation of ribonuclease P activity by calcipotriol. Eur J Biochem 267:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Tsambaos D et al (2000b) Additive inhibitory effect of calcipotriol and anthralin on ribonuclease P activity. Biochem Pharmacol 60:91–94

    Article  CAS  PubMed  Google Scholar 

  • Papadimou E, Monastirli A, Tsambaos D et al (2000c) Inhibitory effects of arotinoids on tRNA biogenesis. Skin Pharmacol Appl Skin Physiol 13:345–351

    CAS  PubMed  Google Scholar 

  • Papadimou E, Pavlidou D, Seraphin B et al (2003) Retinoids inhibit human epidermal keratinocyte RNase P activity. Biol Chem 384:457–462

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Vioque A (1999) Substrate binding and catalysis by ribonuclease P from cyanobacteria and Escherichia coli are affected differently by the 3′ terminal CCA in tRNA precursors. Proc Natl Acad Sci U S A 96:6672–6677

    Article  CAS  PubMed  Google Scholar 

  • Patzel V, Steidl U, Kronenwett R et al (1999) A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 27:4328–4334

    Article  CAS  PubMed  Google Scholar 

  • Schedl P, Primakoff P, Roberts J (1974) Processing of E. coli tRNA precursors. Brookhaven Symp Biol 26:53–76

    CAS  Google Scholar 

  • Singh SK, Wengel J (1998) Universality of LNA-mediated high-affinity nucleic acid recognition. Chem Commun 12:1247–1248

    Google Scholar 

  • Spitzfaden C, Nicholson N, Jones JJ et al (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115

    Article  CAS  PubMed  Google Scholar 

  • Stams T, Niranjanakumari S, Fierke CA (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755

    Article  CAS  PubMed  Google Scholar 

  • Stathopoulos C, Tsagla A, Tekos A et al (2000) Effect of peptidyltransferase inhibitors on ribonuclease P activity from Dictyostelium discoideum. Effect of antibiotics on RNase P. Mol Biol Rep 27:107–111

    Article  CAS  PubMed  Google Scholar 

  • Tekos A, Prodromaki E, Papadimou E et al (2003) Aminoglycosides suppress tRNA processing in human epidermal keratinocytes in vitro. Skin Pharmacol Appl Skin Physiol 16:252–258

    CAS  PubMed  Google Scholar 

  • Tekos A, Stathopoulos C, Tsambaos D et al (2004) RNase P: a promising molecular target for the development of new drugs. Curr Med Chem 11:2979–2989

    CAS  PubMed  Google Scholar 

  • Tekos A, Tsagla A, Stathopoulos C et al (2000) Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: kinetic studies. FEBS Lett 485:71–75

    Article  CAS  PubMed  Google Scholar 

  • Tor Y (2006) The ribosomal A-site as an inspiration for the design of RNA binders. Biochimie 88:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Torres-Larios A, Swinger KK, Krasilnikov AS et al (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587

    Article  CAS  PubMed  Google Scholar 

  • Toumpeki C, Vourekas A, Kalavrizioti D et al (2008) Activation of bacterial ribonuclease P by macrolides. Biochemistry 47:4112–4118

    Article  CAS  PubMed  Google Scholar 

  • Tsai HY, Masquida B, Biswas R et al (2003) Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 325:661–675

    Article  CAS  PubMed  Google Scholar 

  • Velec HF, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48:6296–6303

    Article  CAS  PubMed  Google Scholar 

  • Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  PubMed  Google Scholar 

  • Vioque A (1989) Protein synthesis inhibitors and catalytic RNA. Effect of puromycin on tRNA precursor processing by the RNA component of Escherichia coli RNase P. FEBS Lett 246:137–139

    Article  CAS  PubMed  Google Scholar 

  • Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638

    Article  CAS  PubMed  Google Scholar 

  • Walter F, Vicens Q, Westhof E (1999) Aminoglycoside-RNA interactions. Curr Opin Chem Biol 3:694–704

    Article  CAS  PubMed  Google Scholar 

  • Waugh DS, Pace NR (1990) Complementation of an RNase P RNA (rnpB) gene deletion in Escherichia coli by homologous genes from distantly related eubacteria. J Bacteriol 172:6316–6322

    CAS  PubMed  Google Scholar 

  • Wegscheid B, Condon C, Hartmann RK (2006) Type A and B RNase P RNAs are interchangeable in vivo despite substantial biophysical differences. EMBO Rep 7:411–417

    CAS  PubMed  Google Scholar 

  • Wegscheid B, Hartmann RK (2006) The precursor tRNA 3′-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo. RNA 12:2135–2148

    Article  CAS  PubMed  Google Scholar 

  • Willkomm DK, Gruegelsiepe H, Goudinakis O et al (2003) Evaluation of bacterial RNase P RNA as a drug target. Chembiochem 4:1041–1048

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland K. Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willkomm, D.K., Pfeffer, P., Reuter, K., Klebe, G., Hartmann, R.K. (2010). RNase P as a Drug Target. In: Liu, F., Altman, S. (eds) Ribonuclease P. Protein Reviews, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1142-1_13

Download citation

Publish with us

Policies and ethics