Skip to main content

Immune Interventions of Human Diseases through Toll-Like Receptors

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 655))

Abstract

Toll-like receptors (TLRs) are the immune sensors for infections, triggering robust innate immune activation followed by protective adaptive immunity against various infectious diseases. Recent evidence, however, has suggested that TLRs are involved in the pathogenesis of many diseases, including not only infectious diseases but also autoimmune diseases, allergy and atherosclerosis. Therefore, prophylactic or therapeutic application of TLR-based immune interventions should be potent, but their safety must be demonstrated using experimental animal models as well as human resources, including analysis of single nucleotide polymorphisms. Here, we focus on recent advances in understanding of the protective and pathogenic roles of TLRs in human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Lemaitre B. The road to Toll. Nat Rev Immunol 2004; 4:521–527.

    CAS  PubMed  Google Scholar 

  2. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.

    CAS  PubMed  Google Scholar 

  3. Medzhitov R. Toll-like receptors and innate immunity. Nature Rev Immunol 2001; 1:135–145.

    CAS  Google Scholar 

  4. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004; 4:499–511.

    CAS  PubMed  Google Scholar 

  5. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124:783–801.

    CAS  PubMed  Google Scholar 

  6. Reis e Sousa. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin Immunol 2004; 16:27–34.

    Google Scholar 

  7. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5:987–995.

    CAS  PubMed  Google Scholar 

  8. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5:975–979.

    CAS  PubMed  Google Scholar 

  9. Turvey SE, Hawn TR. Towards subtlety: Understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin Immunol 2006.

    Google Scholar 

  10. Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 2005; 5:156–164.

    PubMed  Google Scholar 

  11. Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol 2005; 17:338–344.

    CAS  PubMed  Google Scholar 

  12. Ishii KJ, Coban C, Akira S. Manifold mechanisms of toll-like receptor-ligand recognition. J Clin Immunol 2005; 25:511–521.

    CAS  PubMed  Google Scholar 

  13. Mukhopadhyay S, Herre J, Brown GD et al. The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 2004; 112:521–530.

    CAS  PubMed  Google Scholar 

  14. Kawai T, Sato S, Ishii KJ et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 2004; 5:1061–1068.

    CAS  PubMed  Google Scholar 

  15. Uematsu S, Sato S, Yamamoto M et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005; 201:915–923.

    CAS  PubMed  Google Scholar 

  16. Honda K, Yanai H, Mizutani T et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci USA 2004; 101:15416–15421.

    CAS  PubMed  Google Scholar 

  17. Uematsu S, Sato S, Yamamoto M et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005; 201:915–923.

    CAS  PubMed  Google Scholar 

  18. Oganesyan G, Saha SK, Guo B et al. Critical role of TRAF3 in the Toll-like receptor-dependent and-independent anti-viral response. Nature 2006; 439:208–211.

    CAS  PubMed  Google Scholar 

  19. Hacker H, Redecke V, Blagoev B et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006; 439:204–207.

    PubMed  Google Scholar 

  20. Hoshino K, Sugiyama T, Matsumoto M et al. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 2006; 440:949–953.

    CAS  PubMed  Google Scholar 

  21. Sharma S, tenOever BR, Grandvaux N et al. Triggeting the interferon anti-viral response through an IKK-related pathway. Science 2003; 300:1148–1151.

    CAS  PubMed  Google Scholar 

  22. Fitzgerald KA, mcWhirter SM, Faia KL et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4:491–496.

    CAS  PubMed  Google Scholar 

  23. Ishii KJ, Coban C, Kato H et al. A Toll-like receptor-independent anti-viral response induced by double-stranded B-form DNA. Nat Immunol 2006; 7:40–48.

    CAS  PubMed  Google Scholar 

  24. Hemmi H, Takeuchi O, Sato S et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 2004; 199:1641–1650.

    CAS  PubMed  Google Scholar 

  25. Takaoka A, Yanai H, Kondo S et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005; 434:243–249.

    CAS  PubMed  Google Scholar 

  26. Hajjar AM, Ernst RK, Tsai JH et al. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 2002; 3:354–359.

    CAS  PubMed  Google Scholar 

  27. Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98:9237–9242.

    CAS  PubMed  Google Scholar 

  28. Takeshita F, Leifer CA, Gursel I et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol 2001; 167:3555–3558.

    CAS  PubMed  Google Scholar 

  29. Lazarus R, Vercelli D, Palmer LJ et al. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 2002; 190:9–25.

    CAS  PubMed  Google Scholar 

  30. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709–760.

    CAS  PubMed  Google Scholar 

  31. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 2004; 4:249–258.

    CAS  PubMed  Google Scholar 

  32. Baldridge JR, mcGowan P, Evans JT et al. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 2004; 4:1129–1138.

    CAS  PubMed  Google Scholar 

  33. Vasilakos JP, Smith RM, Gibson SJ et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell Immunol 2000; 204:64–74.

    CAS  PubMed  Google Scholar 

  34. Wille-Reece U, Flynn BJ, Lore K et al. HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci USA 2005; 102:15190–15194.

    CAS  PubMed  Google Scholar 

  35. Alexopoulou L, Thomas V, Schnare M et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in. Nat Med 2002; 8:878–884.

    CAS  PubMed  Google Scholar 

  36. Heikenwalder M, Polymenidou M, Junt T et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 2004; 10:187–192.

    CAS  PubMed  Google Scholar 

  37. Marshak-Rothstein A, Busconi L, Lau CM et al. Comparison of CpG s-ODNs, chromatin immune complexes, and dsDNA fragment immune complexes in the TLR9-dependent activation of rheumatoid factor B cells. J Endotoxin Res 2004; 10:247–251.

    CAS  PubMed  Google Scholar 

  38. Deng GM, Nilsson IM, Verdrengh M et al. Intra-articularly localized bacterial DNA containing CpG motifs induces arthritis. Nat Med 1999; 5:702–705.

    CAS  PubMed  Google Scholar 

  39. Takeuchi O, Kawai T, Muhlradt PF et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13:933–940.

    CAS  PubMed  Google Scholar 

  40. Takeuchi O, Sato S, Horiuchi T et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002; 169:10–14.

    CAS  PubMed  Google Scholar 

  41. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335–376.

    CAS  PubMed  Google Scholar 

  42. Lorenz E, Mira JP, Cornish KL et al. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000; 68:6398–6401.

    CAS  PubMed  Google Scholar 

  43. Kang TJ, Lee SB, Chae GT. A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine 2002; 20:56–62.

    CAS  PubMed  Google Scholar 

  44. Ogus AC, Yoldas B, Ozdemir T et al. The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23:219–223.

    CAS  PubMed  Google Scholar 

  45. Ben Ali, M, Barbouche, MR, Bousnina, S et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 2004; 11:625–626.

    CAS  PubMed  Google Scholar 

  46. Yim JJ, Lee HW, Lee HS et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 2006; 7:150–155.

    CAS  PubMed  Google Scholar 

  47. Rharbaoui F, Drabner B, Borsutzky S et al. The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 2002; 32:2857–2865.

    CAS  PubMed  Google Scholar 

  48. Becker PD, Fiorentini S, Link C et al. The HIV-1 matrix protein p17 can be efficiently delivered by intranasal route in mice using the TLR 2/6 agonist MALP-2 as mucosal adjuvant. Vaccine 2005.

    Google Scholar 

  49. Patel M, Xu D, Kewin P et al. TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. J Immunol 2005; 174:7558–7563.

    CAS  PubMed  Google Scholar 

  50. Redecke V, Hacker H, Datta SK et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004; 172:2739–2743.

    CAS  PubMed  Google Scholar 

  51. Eder W, Klimecki W, Yu L et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004; 113:482–488.

    CAS  PubMed  Google Scholar 

  52. Tantisira K, Klimecki WT, Lazarus R et al. Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun 2004; 5:343–346.

    CAS  PubMed  Google Scholar 

  53. Mayr M, Kiechl S, Willeit J et al. Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 2000; 102:833–839.

    CAS  PubMed  Google Scholar 

  54. Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115:3149–3156.

    CAS  PubMed  Google Scholar 

  55. Bjorkbacka H, Kunjathoor VV, Moore KJ et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 2004; 10:416–421.

    PubMed  Google Scholar 

  56. Hamann L, Gomma A, Schroder NW et al. A frequent toll-like receptor (TLR)-2 polymorphism is a risk factor for coronary restenosis. J Mol Med 2005; 83:478–485.

    CAS  PubMed  Google Scholar 

  57. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085–2088.

    CAS  PubMed  Google Scholar 

  58. Hoshino K, Takeuchi O, Kawai T et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162:3749–3752.

    CAS  PubMed  Google Scholar 

  59. Arbour NC, Lorenz E, Schutte BC et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25:187–191.

    CAS  PubMed  Google Scholar 

  60. Ishii KJ, Akira S. Toll-like Receptors and Sepsis. Curr Infect Dis Rep 2004; 6:361–366.

    PubMed  Google Scholar 

  61. Hawkins LD, Christ WJ, Rossignol DP. Inhibition of endotoxin response by synthetic TLR4 antagonists. Curr Top Med Chem 2004; 4:1147–1171.

    CAS  PubMed  Google Scholar 

  62. Kawai T, Adachi O, Ogawa T et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999; 11:115–122.

    CAS  PubMed  Google Scholar 

  63. Tal G, Mandelberg A, Dalal I et al. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 2004; 189:2057–2063.

    CAS  PubMed  Google Scholar 

  64. Rezazadeh M, Hajilooi M, Rafiei A et al. TLR4 polymorphism in Iranian patients with brucellosis. J Infect 2005.

    Google Scholar 

  65. Mockenhaupt FP, Cramer JP, Hamann L et al. Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA 2006: 103;177–182.

    CAS  PubMed  Google Scholar 

  66. Van der Graaf CA, Netea MG, Morre SA et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw 2006; 17:29–34.

    PubMed  Google Scholar 

  67. Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1:398–401.

    CAS  PubMed  Google Scholar 

  68. Kobayashi M, Kweon MN, Kuwata H et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J Clin Invest 2003; 111:1297–1308.

    CAS  PubMed  Google Scholar 

  69. Franchimont D, Vermeire S, El Housni H et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 2004; 53:987–992.

    CAS  PubMed  Google Scholar 

  70. Torok HP, Glas J, Tonenchi L et al. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004; 112:85–91.

    CAS  PubMed  Google Scholar 

  71. Pabst S, Baumgarten G, Stremmel A et al. Toll-like receptor (TLR) 4 polymorphisms are associated with a chronic course of sarcoidosis. Clin Exp Immunol 2006; 143:420–426.

    CAS  PubMed  Google Scholar 

  72. Ishihara S, Rumi MA, Kadowaki Y et al. Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis. J Immunol 2004; 173:1406–1416.

    CAS  PubMed  Google Scholar 

  73. Backhed F, Rokbi B, Torstensson E et al. Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J Infect Dis 2003; 187:829–836.

    PubMed  Google Scholar 

  74. Smith MF Jr, Mitchell A, Li G et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J Biol Chem 2003; 278:32552–32560.

    CAS  PubMed  Google Scholar 

  75. Mandell L, Moran AP, Cocchiarella A et al. Intact gram-negative Helicobacter pylori, Helicobacter felis, and Helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4. Infect Immun 2004; 72:6446–6454.

    CAS  PubMed  Google Scholar 

  76. Strober W, Murray PJ, Kitani A et al. Signalling pathways and molecular interactions of NOD1 and NOD2. Nat Rev Immunol 2006; 6:9–20.

    CAS  PubMed  Google Scholar 

  77. Takenaka R, Yokota K, Ayada K et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology 2004; 150:3913–3922.

    CAS  PubMed  Google Scholar 

  78. Rohde G, Klein W, Arinir U et al. Association of the ASP299GLY TLR4 polymorphism with COPD. Respir Med 2006; 100:892–896.

    PubMed  Google Scholar 

  79. Yang IA, Fong KM, Holgate ST et al. The role of Toll-like receptors and related receptors of the innate immune system in asthma. Curr Opin Allergy Clin Immunol 2006; 6:23–28.

    PubMed  Google Scholar 

  80. Nakashima K, Hirota T, Obara K et al. An association study of asthma and related phenotypes with polymorphisms in negative regulator molecules of the TLR signaling pathway. J Hum Genet 2006; 51:284–291.

    CAS  PubMed  Google Scholar 

  81. Cluff CW, Baldridge JR, Stover AG et al. Synthetic toll-like receptor 4 agonists stimulate innate resistance to infectious challenge. Infect Immun 2005; 73:3044–3052.

    CAS  PubMed  Google Scholar 

  82. Masihi KN, Lange W, Brehmer W et al. Immunobiological activities of nontoxic lipid A: enhancement of nonspecific resistance in combination with trehalose dimycolate against viral infection and adjuvant effects. Int J Immunopharmacol 1986; 8:339–345.

    CAS  PubMed  Google Scholar 

  83. Evans JT, Cluff CW, Johnson DA et al. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev Vaccines 2003; 2:219–229.

    CAS  PubMed  Google Scholar 

  84. Hoffman ES, Smith RE, Renaud RC Jr. From the analyst’s couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4:879–880.

    CAS  PubMed  Google Scholar 

  85. Christ WJ, Asano O, Robidoux AL et al. E5531, a pure endotoxin antagonist of high potency. Science 1995; 268:80–83.

    CAS  PubMed  Google Scholar 

  86. Fort MM, Mozaffarian A, Stover AG et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J Immunol 2005; 174:6416–6423.

    CAS  PubMed  Google Scholar 

  87. Stover AG, da Silva CJ, Evans JT et al. Structure-activity relationship of synthetic toll-like receptor 4 agonists. J Biol Chem 2004; 279:4440–4449.

    PubMed  Google Scholar 

  88. Hayashi F, Smith KD, Ozinsky A et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099–1103.

    CAS  PubMed  Google Scholar 

  89. Uematsu S, Jang MH, Chevrier N et al. TLR5 is highly expressed on intestinal CD11c+ lamina propria cells and utilized by S. typhimurium for systemic infection. Nat Immunol 2006; In press.

    Google Scholar 

  90. Molofsky AB, Byrne BG, Whitfield NN et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 2006; 203:1093–1104.

    CAS  PubMed  Google Scholar 

  91. Applequist SE, Rollman E, Wareing MD et al. Activation of innate immunity, inflammation, and potentiation of DNA vaccination through mammalian expression of the TLR5 agonist flagellin. J Immunol 2005; 175:3882–3891.

    CAS  PubMed  Google Scholar 

  92. Honko AN, Sriranganathan N, Lees CJ et al. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun 2006; 74:1113–1120.

    CAS  PubMed  Google Scholar 

  93. Hawn TR, Verbon A, Lettinga KD et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 2003; 198:1563–1572.

    CAS  PubMed  Google Scholar 

  94. Hawn TR, Wu H, Grossman JM et al. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci USA 2005.

    Google Scholar 

  95. Lembo A, Kalis C, Kirschning CJ et al. Differential contribution of Toll-like receptors 4 and 2 to the cytokine response to Salmonella enterica serovar Typhimurium and Staphylococcus aureus in mice. Infect Immun 2003; 71:6058–6062.

    CAS  PubMed  Google Scholar 

  96. Sebastiani G, Leveque G, Lariviere L et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics 2000; 64:230–240.

    CAS  PubMed  Google Scholar 

  97. Zeng H, Wu H, Sloane V et al. Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. Am J Physiol Gastrointest Liver Physiol 2006; 290:G96–G108.

    CAS  PubMed  Google Scholar 

  98. Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004; 113:1296–1306.

    CAS  PubMed  Google Scholar 

  99. Sitaraman SV, Klapproth JM, Moore DA III et al. Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 2005; 288:G403–G406.

    CAS  PubMed  Google Scholar 

  100. Gewirtz AT, Vijay-Kumar M, Brant SR et al. Dominant-negative TLR5 polymorphism reduces adaptive immune response to flagellin and negatively associates with Crohn’s disease. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1157–G1163.

    CAS  PubMed  Google Scholar 

  101. Hemmi H, Kaisho T, Takeuchi O et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196–200.

    CAS  PubMed  Google Scholar 

  102. Jurk M, Heil F, Vollmer J et al. Human TLR7 or TLR8 independently confer responsiveness to the anti-viral compound R-848. Nat Immunol 2002; 3:499.

    CAS  PubMed  Google Scholar 

  103. Diebold SS, Kaisho T, Hemmi H et al. Innate anti-viral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529–1531.

    CAS  PubMed  Google Scholar 

  104. Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526–1529.

    CAS  PubMed  Google Scholar 

  105. Horsmans Y, Berg T, Desager JP et al. Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection. Hepatology 2005; 42:724–731.

    CAS  PubMed  Google Scholar 

  106. McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 2005; 125:1–8.

    CAS  PubMed  Google Scholar 

  107. Stockfleth E, Trefzer U, Garcia-Bartels C et al. The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br J Dermatol 2003; 149 Suppl 66:53–56.

    CAS  PubMed  Google Scholar 

  108. Lysa B, Tartler U, Wolf R et al. Gene expression in actinic keratoses: pharmacological modulation by imiquimod. Br J Dermatol 2004; 151:1150–1159.

    CAS  PubMed  Google Scholar 

  109. Savarese E, Chae OW, Trowitzsch S et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 2006; 107:3229–3234.

    CAS  PubMed  Google Scholar 

  110. Vollmer J, Tluk S, Schmitz C et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 2005; 202:1575–1585.

    CAS  PubMed  Google Scholar 

  111. Lau CM, Broughton C, Tabor AS et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005; 202:1171–1177.

    CAS  PubMed  Google Scholar 

  112. Barrat FJ, Meeker T, Gregorio J et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005; 202:1131–1139.

    CAS  PubMed  Google Scholar 

  113. Broide DH. Immunostimulatory sequences of DNA and conjugates in the treatment of allergic rhinitis. Curr Allergy Asthma Rep 2005; 5:182–185.

    CAS  PubMed  Google Scholar 

  114. Vollmer J. Progress in drug development of immunostimulatory CpG oligodeoxynucleotide ligands for TLR9. Expert Opin Biol Ther 2005; 5:673–682.

    CAS  PubMed  Google Scholar 

  115. Hessel EM, Chu M, Lizcano JO et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J Exp Med 2005; 202:1563–1573.

    CAS  PubMed  Google Scholar 

  116. Ishii KJ, Gursel I, Gursel M et al. Immunotherapeutic utility of stimulatory and suppressive oligodeoxynucleotides. Curr Opin Mol Ther 2004; 6:166–174.

    CAS  PubMed  Google Scholar 

  117. Kandimalla ER, Bhagat L, Li Y et al. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2′-deoxy-7-deazaguanosine motif as potent Toll-like receptor 9 agonists. Proc Natl Acad Sci USA 2005.

    Google Scholar 

  118. Roberts TL, Sweet MJ, Hume DA et al. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol 2005; 174:605–608.

    CAS  PubMed  Google Scholar 

  119. Ishii KJ, Akira S. Innate immune recognition of nucleic acids: Beyond toll-like receptors. Int J Cancer 2005; 117:517–523.

    CAS  PubMed  Google Scholar 

  120. Coban C, Ishii KJ, Kawai T et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 2005; 201:19–25.

    CAS  PubMed  Google Scholar 

  121. Rifkin IR, Leadbetter EA, Busconi L et al. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 2005; 204:27–42.

    CAS  PubMed  Google Scholar 

  122. Wu X, Peng SL. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum 2006; 54:336–342.

    CAS  PubMed  Google Scholar 

  123. Hur JW, Shin HD, Park BL et al. Association study of Toll-like receptor 9 gene polymorphism in Korean patients with systemic lupus erythematosus. Tissue Antigens 2005; 65:266–270.

    CAS  PubMed  Google Scholar 

  124. De Jager PL, Richardson A, Vyse TJ et al. Genetic variation in toll-like receptor 9 and susceptibility to systemic lupus erythematosus. Arthritis Rheum 2006; 54:1279–1282.

    PubMed  Google Scholar 

  125. Zeuner RA, Ishii KJ, Lizak MJ et al. Reduction of CpG-induced arthritis by suppressive oligode-oxynucleotides. Arthritis Rheum 2002; 46:2219–2224.

    CAS  PubMed  Google Scholar 

  126. Dong L, Ito S, Ishii KJ et al. Suppressive oligonucleotides protect against collagen-induced arthritis in mice. Arthritis Rheum 2004; 50:1686–1689.

    CAS  PubMed  Google Scholar 

  127. Dong L, Ito S, Ishii KJ et al. Suppressive oligodeoxynucleotides delay the onset of glomerulonephritis and prolong survival in lupus-prone NZB x NZW mice. Arthritis Rheum 2005; 52:651–658.

    CAS  PubMed  Google Scholar 

  128. Robinson RA, DeVita VT, Levy HB et al. A phase I–II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J Natl Cancer Inst 1976; 57:599–602.

    CAS  PubMed  Google Scholar 

  129. Adams M, Navabi H, Jasani B et al. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically nontoxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R). Vaccine 2003; 21:787–790.

    CAS  PubMed  Google Scholar 

  130. Pirie FJ, Pegoraro R, Motala AA et al. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes. Tissue Antigens 2005; 66:125–130.

    CAS  PubMed  Google Scholar 

  131. Hasan U, Chaffois C, Gaillard C et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol 2005; 174:2942–2950.

    CAS  PubMed  Google Scholar 

  132. Zhou XX, Jia WH, Shen GP et al. Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk. Cancer Epidemiol. Biomarkers Prev. 2006; 15:862–866.

    CAS  PubMed  Google Scholar 

  133. Zonana J, Elder ME, Schneider LC et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 2000; 67:1555–1562.

    CAS  PubMed  Google Scholar 

  134. Suzuki N, Suzuki S, Duncan GS et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 416:750–756.

    CAS  PubMed  Google Scholar 

  135. Picard C, Puel A, Bonnet M et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 2003; 299:2076–2079.

    CAS  PubMed  Google Scholar 

  136. Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38:550–555.

    CAS  PubMed  Google Scholar 

  137. Schroder NW, Diterich I, Zinke A et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 2005; 175:2534–2540.

    PubMed  Google Scholar 

  138. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 2004; 113:565–567.

    CAS  PubMed  Google Scholar 

  139. Pierik M, Joossens S, Van Steen K et al. Toll-like receptor-1,-2, and-6 polymorphisms influence disease extension in inflammatory bowel diseases. Inflamm Bowel Dis 2006; 12:1–8.

    PubMed  Google Scholar 

  140. Faber J, Meyer CU, Gemmer C et al. Human toll-like receptor 4 mutations are associated with susceptibility to invasive meningococcal disease in infancy. Pediatr Infect Dis J 2006; 25:80–81.

    PubMed  Google Scholar 

  141. Montes AH, Asensi V, Alvarez V et al. The Toll-like receptor 4 (Asp299Gly) polymorphism is a risk factor for Gram-negative and haematogenous osteomyelitis. Clin Exp Immunol 2006; 143:404–413.

    CAS  PubMed  Google Scholar 

  142. Kinane DF, Shiba H, Stathopoulou PG et al. Gingival epithelial cells heterozygous for Toll-like receptor 4 polymorphisms Asp299Gly and Thr399ile are hypo-responsive to Porphyromonas gingivalis. Genes Immun 2006; 7:190–200.

    CAS  PubMed  Google Scholar 

  143. Genc MR, Vardhana S, Delaney ML et al. Relationship between a toll-like receptor-4 gene polymorphism, bacterial vaginosis-related flora and vaginal cytokine responses in pregnant women. Eur J Obstet Gynecol Reprod Biol 2004; 116:152–156.

    CAS  PubMed  Google Scholar 

  144. Brand S, Staudinger T, Schnitzler F et al. The role of Toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of Crohn’s disease. Inflamm Bowel Dis 2005; 11:645–652.

    PubMed  Google Scholar 

  145. Kiechl S, Lorenz E, Reindl M et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347:185–192.

    CAS  PubMed  Google Scholar 

  146. Ameziane N, Beillat T, Verpillat P et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler Thromb Vasc Biol 2003; 23:61–64.

    Google Scholar 

  147. Edfeldt K, Bennet AM, Ariksson P et al. Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. Eur Heart J 2004; 25:1447–1453.

    CAS  PubMed  Google Scholar 

  148. Minoretti P, Gazzaruso C, Vito CD et al. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 2006; 391:147–149.

    CAS  PubMed  Google Scholar 

  149. Hellmig S, Fischbach W, Goebeler-Kolve ME et al. Association study of a functional Toll-like receptor 4 polymorphism with susceptibility to gastric mucosa-associated lymphoid tissue lymphoma. Leuk Lymphoma 2005; 46:869–872.

    CAS  PubMed  Google Scholar 

  150. Lorenz E, Mira JP, Fresss KL et al. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 2002; 162:1028–1032.

    CAS  PubMed  Google Scholar 

  151. Hawn TR, Verbon A, Janer M et al. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA 2005; 102:2487–2489.

    CAS  PubMed  Google Scholar 

  152. Radstake TR, Franke B, Hanssen S et al. The Toll-like receptor 4 Asp299Gly functional variant is associated with decreased rheumatoid arthritis disease susceptibility but does not influence disease severity and/or outcome. Arthritis Rheum 2004; 50:999–1001.

    CAS  PubMed  Google Scholar 

  153. Palmer SM, Burch LH, Mir S et al. Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation. Clin Transplant 2006; 20:30–36.

    PubMed  Google Scholar 

  154. Elmaagacli AH, Koldehoff M, Hindahl M et al. Mutations in innate immune system NOD2/CARD 15 and TLR-4 (Thr399Ile) genes influence the risk for severe acute graft-versus-host disease in patients who underwent an allogeneic transplantation. Transplantation 2006; 81:247–254.

    CAS  PubMed  Google Scholar 

  155. Lin YC, Chang YM, Yu JM et al. Toll-like receptor 4 gene C119A but not Asp299Gly polymorphism is associated with ischemic stroke among ethnic Chinese in Taiwan. Atherosclerosis 2005; 180:305–309.

    CAS  PubMed  Google Scholar 

  156. Zheng SL, Augustsson-Balter K, Chang B et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer Prostate in Sweden Study. Cancer Res. 2004; 64:2918–2922.

    CAS  PubMed  Google Scholar 

  157. Chen YC, Giovannucci E, Lazarus R et al. Sequence variants of Toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res 2005; 65:11771–11778.

    CAS  PubMed  Google Scholar 

  158. Smirnova I, Mann N, Dols A et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA 2003; 100:6075–6080.

    CAS  PubMed  Google Scholar 

  159. Torok HP, Glas J, Tonenchi L et al. Crohn’s disease is associated with a toll-like receptor-9 polymorphism. Gastroenterology 2004; 127:365–366.

    PubMed  Google Scholar 

  160. Lammers KM, Ouburg S, Morre SA et al. Combined carriership of TLR9-1237C and CD14-260T alleles enhances the risk of developing chronic relapsing pouchitis. World J Gastroenterol 2005; 11:7323–7329.

    CAS  PubMed  Google Scholar 

  161. Lazarus R, Raby BA, Lange C et al. TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 2004; 170:594–600.

    PubMed  Google Scholar 

  162. Courtois G, Smahi A, Reichenbach J et al. A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 2003t; 112:1108–1115

    CAS  PubMed  Google Scholar 

  163. Abdallah A, Satu H, Grutters JC et al. Inhibitor kappa B-alpha (IkappaB-alpha) promoter polymorphisms in UK and Dutch sarcoidosis. Genes Immun 2003; 4:450–454.

    CAS  PubMed  Google Scholar 

  164. Spink CF, Gray LC, Davies FE et al. Haplotypic structure across the IkappaBalpha gene (NFKBIA) and association with multiple myeloma. Cancer Lett 2006 [Epub ahead of print].

    Google Scholar 

  165. Sun J, Wiklund F, Hsu FC et al. Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15:480–485.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Coban, C., Ishii, K.J., Akira, S. (2009). Immune Interventions of Human Diseases through Toll-Like Receptors. In: Guzmán, C.A., Feuerstein, G.Z. (eds) Pharmaceutical Biotechnology. Advances in Experimental Medicine and Biology, vol 655. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1132-2_7

Download citation

Publish with us

Policies and ethics