Skip to main content

RhoC GTPase in Cancer Progression and Metastasis

  • Chapter
  • First Online:
The Rho GTPases in Cancer

Abstract

RhoC GTPase is more than 90% homologous to RhoA GTPase and was thought to have functions redundant to RhoA. Evidence over the years has demonstrated that despite their high degree of homology, RhoA and RhoC have distinct functions within the cell. Specifically, RhoC GTPase appears to be associated with particularly aggressive cancers and metastasis leading to increased migration and invasion. Unlike RhoA, expression and activation of RhoC appears to be dispensable for normal development and function. These attributes make RhoC a particularly attractive prognostic marker and potential antimetastatic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson P, Marshall CJ, Hall A, Tilbrook PA (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267:20033–20038.

    CAS  PubMed  Google Scholar 

  • Arthur WT, Burridge K (2001) RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12:2711–2720.

    CAS  PubMed  Google Scholar 

  • Avraham H (1990) Rho gene amplification and malignant transformation. Biochem Biophys Res Commun 168:114–124.

    Article  CAS  Google Scholar 

  • Billuart P, Winter CG, Maresh A, Zhao X, Luo L (2001) Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107:195–207.

    Article  CAS  PubMed  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255.

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Marshall CJ, Pennie SG, Hall A (1984) Mechanism of activation of an N-ras gene in the human fibrosarcoma cell line HT1080. EMBO J 3:1321–1326.

    CAS  PubMed  Google Scholar 

  • Capon DJ, Seeburg PH, McGrath JP, et al (1983) Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature 304:507–513.

    Article  CAS  PubMed  Google Scholar 

  • Carr KM, Bittner M, Trent JM (2003) Gene-expression profiling in human cutaneous melanoma. Oncogene 22:3076–3080.

    Article  CAS  PubMed  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535.

    Article  CAS  PubMed  Google Scholar 

  • Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, et al (2002) Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene 21:4587–4594.

    Article  CAS  PubMed  Google Scholar 

  • del Peso L, Hernandez-Alcoceba R, Embade N, et al (1997) Rho proteins induce metastatic properties in vivo. Oncogene 15:3047–3057.

    Article  PubMed  Google Scholar 

  • Dias S, Cerione RA (2008) X-ray crystal sturctures reveal two actived states for RhoC. Biochemistry 46:6547–6558.

    Article  Google Scholar 

  • Du W, Lebowitz PF, Prendergast GC (1999) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell Biol 19:1831–1840.

    CAS  Google Scholar 

  • Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW (1984) Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38:109–117.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687.

    Article  CAS  PubMed  Google Scholar 

  • Groh K, Lin M, van Golen CM, van Golen KL (2006) The Rho GTPases and angiogenesis. In: Zubar R (ed) New angogenesis research. Nova Biomedical Books, New York, pp. 19–42.

    Google Scholar 

  • Hakem A, Sanchez-Sweatman O, You-Ten A, et al (2005) RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19:1974–1979.

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249:635–640.

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514.

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303:396–400.

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Dai J, van Golen KL, Keller ET, Long M (2006) Type I colagen receptor (alpha2 beta1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res 66:8648–8654.

    Article  CAS  PubMed  Google Scholar 

  • Hall C, Shein D, Dubyk C, Riesenberger T, Keller ET, van Golen KL (2008) Type I Collagen receptor (alpha2beta3) signaling promotes prostate cancer cell invasion through RhoC GTPase. Neoplasia In Press.

    Google Scholar 

  • Hall C, Dubyk CW, Riesenberger TA, Shein D, Keller ET, van Golen KL Neoplasia 10(8):797–803.

    CAS  PubMed  Google Scholar 

  • Haskell MD, Slack JK, Parsons JT, Parsons SJ (2001) c-Src tyrosine phosphorylation of epidermal growth factor receptor, P190 RhoGAP, and focal adhesion kinase regulates diverse cellular processes. Chem Rev 101:2425–2440.

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi A, Imai T, Wang C, et al (2003) Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 83:861–870.

    CAS  PubMed  Google Scholar 

  • Ihara K, Muraguchi S, Kato M, et al (1998) Crystal structure of human RhoA in a dominantly active form complexed with a GTP analoge. J Biol Chem 273:9656–9666.

    Article  CAS  PubMed  Google Scholar 

  • Imamura F, Mukai M, Ayaki M, et al (1999) Involvement of small GTPases Rho and Rac in the invasion of rat ascites hepatoma cells. Clin Exp Metastasis 17:141–148.

    Article  CAS  PubMed  Google Scholar 

  • Jaiyesimi IA, Buzdar AU, Hortobagyi G (1992) Inflammatory breast cancer: a review. J Clin Oncol 10:1014–1024.

    CAS  PubMed  Google Scholar 

  • Kamai T, Tsujii T, Arai K, et al (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9:2632–2641.

    CAS  PubMed  Google Scholar 

  • Kirschmeier PT, Whyte D, Wilson O, Bishop WR, Pai JK (2001) In vivo prenylation analysis of Ras and Rho proteins. Methods Enzymol 332:115–127.

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, van Golen KL, Merajver SD (2000) Molecular biology of breast cancer metastasis. Inflammatory breast cancer: clinical syndrome and molecular determinants. Breast Cancer Res 2:423–429.

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD (2002a) Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160:579–584.

    CAS  PubMed  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, et al (2004a) WISP3 and RhoC guanosine triphosphatase cooperate in the development of inflammatory breast cancer. Breast Cancer Res Treat 6:110–115. Ref Type: Generic

    Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, Merajver SD (2004b) WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6:179–185.

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, et al (2002b) WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 21:3172–3180.

    Article  CAS  PubMed  Google Scholar 

  • Klein WM, Hruban RH, Klein-Szanto AJ, Wilentz RE (2002) Direct correlation between proliferative activity and dysplasia in pancreatic intraepithelial neoplasia (PanIN): additional evidence for a recently proposed model of progression. Mod Pathol 15:441–447.

    Article  PubMed  Google Scholar 

  • Kondo T, Sentani K, Oue N, Yoshida K, Nakayama H, Yasui W (2004) Expression of RHOC is associated with metastasis of gastric carcinomas. Pathobiology 71:19–25.

    Article  PubMed  Google Scholar 

  • Lebowitz PF, Casey PJ, Prendergast GC, Thissen JA (1997) Farnesyltransferase inhibitors alter the prenylation and growth- stimulating function of RhoB. J Biol Chem 272:15591–15594.

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz PF, Davide JP, Prendergast GC (1995) Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol Cell Biol 15:6613–6622.

    CAS  PubMed  Google Scholar 

  • Lin M, DiVito MM, Merajver S, Boyanapalli M, van Golen KL (2005) Regulation of pancreatic cancer cell migration and invasion RhoC GTPase and caveolin-1. Mol Cancer 4:21.

    Article  PubMed  Google Scholar 

  • Lin M, van Golen KL (2004) Rho-regulatory proteins in breast cancer cell motility and invasion. Breast Cancer Res. Treat. (2004) 84:49–60.

    Article  Google Scholar 

  • Logsdon CD, Simeone DM, Binkley C, et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657.

    CAS  PubMed  Google Scholar 

  • Longenecker K, Read P, Somlyo A, Nakamoto R, Derewenda Z (2003) Structure of a constitutively activated RhoA mutant (Q63L) at a 1.55 A resolution. Acta Crystalllogr D Biol Crystallogr 59:876–880.

    Article  Google Scholar 

  • Marionnet C, Lalou C, Mollier K, et al (2003) Differential molecular profiling between skin carcinomas reveals four newly reported genes potentially implicated in squamous cell carcinoma development. Oncogene 22:3500–3505.

    Article  CAS  PubMed  Google Scholar 

  • McGrath JP, Capon DJ, Smith DH, et al (1983). Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. Nature 304:501–506.

    Article  CAS  PubMed  Google Scholar 

  • Moorman JP, Luu D, Wickham J, Bobak DA, Hahn CS (1999). A balance of signaling by Rho family small GTPases RhoA, Rac1 and Cdc42 coordinates cytoskeletal morphology but not cell survival. Oncogene 18:47–57.

    Article  CAS  PubMed  Google Scholar 

  • Moscow JA, He R, Gnarra JR, et al (1994) Examination of human tumors for rhoA mutations. Oncogene 9:189–194.

    CAS  PubMed  Google Scholar 

  • Pille JY, Denoyelle C, Varet J, et al (2005) Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11:267–274.

    Article  CAS  PubMed  Google Scholar 

  • Pille JY, Li H, Bertand J, et al (2008) Intravenous delivery of anti-RhoA small interferring RNA loaded in nonoparticles of chitosan in mice: Safety and efficacy in xenografted aggressive breast cancer. Hum Mol Genet 17:1019–1026.

    Google Scholar 

  • Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF, Der CJ (1995) Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10:2289–2296.

    CAS  PubMed  Google Scholar 

  • Ridley AJ, Hall A (1992a) Distinct patterns of actin organization regulated by the small GTP- binding proteins Rac and Rho. Cold Spring Harb Symp Quant Biol 57:661–671.

    CAS  PubMed  Google Scholar 

  • Ridley AJ, Hall A (1992b) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.

    Article  CAS  PubMed  Google Scholar 

  • Rochlitz CF, Scott GK, Dodson JM, et al (1989) Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360.

    CAS  PubMed  Google Scholar 

  • Rodenhuis S (1992) ras and human tumors. Semin Cancer Biol 3:241–247.

    CAS  PubMed  Google Scholar 

  • Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian M, Wittinghofer A (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518.

    Article  CAS  PubMed  Google Scholar 

  • Sahai E, Marshall CJ (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4:408–415.

    Article  CAS  PubMed  Google Scholar 

  • Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022.

    Article  CAS  PubMed  Google Scholar 

  • Schwering I, Brauninger A, Distler V, et al (2003) Profiling of Hodgkin’s lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin’s lymphoma-specific genes. Mol Med 9:85–95.

    CAS  PubMed  Google Scholar 

  • Sequeira L, Dubyk C, Riesenberger T, Cooper CR, van Golen KL (2008) Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapadesis. Clin Exp Metastasis 25(5): 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Shikada Y, Yoshino I, Okamoto T, et al (2003) Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clin Cancer Res 9:5282–5286.

    CAS  PubMed  Google Scholar 

  • Shinto E, Tsuda H, Matsubara O, Mochizuki H (2003) [Significance of RhoC expression in terms of invasion and metastasis of colorectal cancer]. Nippon Rinsho 61(Suppl 7):215–219.

    PubMed  Google Scholar 

  • Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64:8694–8701.

    Article  CAS  PubMed  Google Scholar 

  • Stacey DW, Kung HF (1984) Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511.

    Article  CAS  PubMed  Google Scholar 

  • Suwa H, Yoshimura T, Yamaguchi N, et al (1994) K-ras and p53 alterations in genomic DNA and transcripts of human pancreatic adenocarcinoma cell lines. Jpn J Cancer Res 85:1005–1014.

    CAS  PubMed  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208.

    CAS  PubMed  Google Scholar 

  • Thalmann GN, Sikes RA, Wu TT, et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44:91–103.

    Article  CAS  PubMed  Google Scholar 

  • van Golen KL (2003) Inflammatory breast cancer: relationship between growth factor signaling and motility in aggressive cancers. Breast Cancer Research 5:174.

    Article  PubMed  Google Scholar 

  • van Golen KL, Bao L, DiVito MM, et al (2002a) Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol. Cancer Ther 1:575–583.

    Google Scholar 

  • van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002b) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19:301–311.

    Article  PubMed  Google Scholar 

  • van Golen KL, Davies S, Wu ZF, et al (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5:2511–2519.

    PubMed  Google Scholar 

  • van Golen KL, Wu ZF, Qiao XT, Bao L, Merajver SD (2000a) RhoC GTPase overexpression modulates induction of angiogenic factors in breast cells. Neoplasia 2:418–425.

    Article  PubMed  Google Scholar 

  • van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD (2000b) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60:5832–5838.

    PubMed  Google Scholar 

  • Van Laere S, Van der Auwer I, Van den Eynden GG, Fox SB, Bianchi F, Harris AL, van Dam P, Van Marck EA, Vermuelen PB and Dirix LY Nuclear factor kappa B signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry and nuclear factor kappaB DNA-binding. Breast Cancer Res Treat. (2005) 93(3):237–246.

    CAS  PubMed  Google Scholar 

  • Wei Y, Zhang Y, Derewenda U, et al (1997) Crystal Structure of RhoA-GDP and its functional implications. Nat Struct Biol 4:699–703.

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Wu ZF, Kumar-Sinha C, Chinnaiyan A, Merajver SD (2004) RhoC induces differential expression of genes involved in invasion and metastasis in MCF10A breast cells. Breast Cancer Res Treat 84:3–12.

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Dashner E, van Golen CM, van Golen KL (2006) RhoC GTPase is required for PC-3 Prostate Cancer Cell Invasion but not Motility. Oncogene 25:2285–2296. Ref Type: Abstract

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin M, van Golen KL, Itoh K, Yee D (2005) Multiple signaling pathways are activated during insulin-like growth factor-I (IGF-1) stimulated breast cancer cell migration. Breast Cancer Res Treat 93:159–168.

    Article  CAS  PubMed  Google Scholar 

  • Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG (2000) Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149:775–782.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth van Golen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

van Golen, K. (2010). RhoC GTPase in Cancer Progression and Metastasis. In: Golen, K. (eds) The Rho GTPases in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1111-7_8

Download citation

Publish with us

Policies and ethics