Skip to main content

In Vitro Studies and Mass Flux of Cholesterol Between Serum and Macrophages

  • Chapter
  • First Online:
High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease

Abstract

Reverse cholesterol transport (RCT) is a complex process. Several steps, utilizing enzymes and transfer proteins, occur within the plasma compartment before the cholesterol molecules are delivered from peripheral cells to hepatocytes (Atherosclerosis 88:99-107, 1991; Arterioscler Thromb Vasc Biol 21:13-27, 2001). Both intracellular and extracellular factors affect the direction of cholesterol flux between cells and serum. When cells are incubated with serum in vitro there is flux of free cholesterol (FC) out of the cell (efflux) while simultaneously there is movement of lipoprotein FC and cholesteryl ester (CE) into the cell (influx). Net cholesterol flux is the difference between influx and efflux and this difference may result in net accumulation, net depletion, or no change in cell cholesterol content. The protocols to measure the efflux of labeled cholesterol are relatively simple since only FC undergoes efflux and the assay can be easily adapted for high throughput use. A significant relationship between net cholesterol removal and the fractional efflux of tracer cholesterol is seen in cholesterol-enriched cells indicates that in vitro isotopic measures of serum efflux efficiency may be valid surrogate measure of the capacity of human serum to remove excess tissue cholesterol in vivo. We have also measured net cholesterol flux as the change in cell cholesterol content upon incubation of J774 cells and mouse peritoneal macrophages with human serum. We found that the cholesterol content of the cell modulates the relative contribution of efflux pathways (ABCAI, SRBI, ABCGI) and thus changes the cell’s response to HDL subfractions and the direction of net cholesterol flux.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franceschini G, Maderna P, Sirtori CR (1991) Reverse cholesterol transport: physiology and pharmacology. Atherosclerosis 88:99–107

    Article  CAS  PubMed  Google Scholar 

  2. Von Eckardstein A, Nofer J-R, Assmann G (2001) High density lipoproteins and arteriosclerosis: role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    Google Scholar 

  3. Glomset JA (1968) The plasma lecithin:cholesterol acyltransferase reaction. J Lipid Res 9:155–167

    CAS  PubMed  Google Scholar 

  4. Fielding CJ (1991) Reverse cholesterol transport. Curr Opin Lipidol 2:376–378

    Article  CAS  Google Scholar 

  5. Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC (1999) Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 40:781–796

    CAS  PubMed  Google Scholar 

  6. Rothblat GH, de la Llera-Moya M, Favari E, Yancey PG, Kellner-Weibel G (2002) Cellular cholesterol flux studies: methodological considerations. Atherosclerosis 163:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271:518–520

    Article  CAS  PubMed  Google Scholar 

  8. Rigotti A, Trigatti B, Babitt J, Penman M, Xu S, Krieger M (1997) Scavenger receptor BI - a cell surface receptor for high density lipoprotein. Curr Opin Lipidol 8:181–188

    Article  CAS  PubMed  Google Scholar 

  9. Ji Y, Wang N, Ramakrishnan R, Sehayek E, Huszar D, Breslow JL et al (1999) Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem 274:33398–33402

    Article  CAS  PubMed  Google Scholar 

  10. Trigatti BL, Rigotti A, Braun A (2001) Cellular and physiological roles of SR-BI, a lipoprotein receptor which mediates selective lipid uptake. Biochim Biophys Acta 1529:276–286

    Google Scholar 

  11. Williams DL, Connelly MA, Temel RE, Swanakar S, Phillips MC, de la Llera-Moya M et al (1999) Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 10:329–339

    Article  CAS  PubMed  Google Scholar 

  12. Bodzioch M, Orsó E, Klucken T, Langmann T, Böttcher L, Diederich W et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22(4):347–351

    Article  CAS  PubMed  Google Scholar 

  13. Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I et al (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276:43564–43569

    Article  CAS  PubMed  Google Scholar 

  14. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M et al (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590

    Article  CAS  PubMed  Google Scholar 

  15. Wang N, Ranalletta M, Matsuura F, Peng F, Tall AR (2006) LXR induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arterioscler Thromb Vasc Biol 26:1310–1316

    Article  CAS  PubMed  Google Scholar 

  16. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, Van Dam M et al (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22(4):336–345

    Article  CAS  PubMed  Google Scholar 

  17. Hayden MR, Clee SM, Brooks-Wilson A, Genest JJr, Attie A, Kastelein JJP (2000) Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Curr Opin Lipidol 11:117–122

    Article  CAS  PubMed  Google Scholar 

  18. Lawn RM, Wade DP, Garvin MR, Wang X, Schwartz K, Porter JG et al (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104:R25-R31

    Article  CAS  PubMed  Google Scholar 

  19. Oram JF (2001) Tangier disease and ABCA1. Biochim Biophys Acta 1529:321–330

    Google Scholar 

  20. Remaley AT, Schumacher UK, Stonik JA, Farsi BD, Nazih H, Brewer HB (1997) Decreased reverse cholesterol transport from Tangier Disease Fibroblasts: acceptor specificity and effect of brefeldin on lipid efflux. Arterioscler Thromb Vasc Biol 17:1813–1821

    CAS  PubMed  Google Scholar 

  21. McNeish J, Aiello RJ, Guyot D, Turley SD, Gaben-Cogneville A-M, Aldinger C et al (2000) High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc Natl Acad Sci USA 97:4245–4250

    Article  CAS  PubMed  Google Scholar 

  22. Arai T, Wang N, Bezouevski M, Welch C, Tall AR (1999) Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem 274:2366–2371

    Article  CAS  PubMed  Google Scholar 

  23. Krieger M, Kozarsky K (1999) Influence of the HDL receptor SR-BI on atherosclerosis. Curr Opin Lipidol 10:491–497

    Article  CAS  PubMed  Google Scholar 

  24. Tall AR, Jiang X, Luo Y, Silver D (1999) Lipid transfer proteins, HDL metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 20:1185–1188

    Google Scholar 

  25. Huszar D, Varban ML, Rinninger F, Feeley R, Arai T, Fairchild-Huntress V et al (2000) Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol 20(4):1068–1073

    CAS  PubMed  Google Scholar 

  26. Kozarsky KF, Donahee MH, Glick JM, Krieger M, Rader DJ (2000) Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20:721–727

    CAS  PubMed  Google Scholar 

  27. Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoprotein. Proc Natl Acad Sci USA 101:9774–9779

    Article  CAS  PubMed  Google Scholar 

  28. Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr PT, Fishbein MC et al (2005) ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 1:121–129

    Article  CAS  PubMed  Google Scholar 

  29. Vaughan AM, Oram JF (2005) ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem 280(34):30150–30157

    Article  CAS  PubMed  Google Scholar 

  30. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M et al (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Throm Vasc Biol 26:534–540

    Article  CAS  Google Scholar 

  31. Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC (1991) Cholesterol transport between cells and high density lipoproteins. Biochim Biophys Acta 1085:273–298

    CAS  PubMed  Google Scholar 

  32. Cuchel M, de la Llera-Moya M, Phillips JA, Wolfe ML, Rothblat GH, Rader DJ (2008) Cholesterol efflux capacity of serum predicts carotid intermal-medial thickness independently of HDL-C and apo A-I levels. Circulation 118(Suppl):371, Abstract

    Google Scholar 

  33. Kellner-Weibel G, Jerome WG, Small DM, Warner GJ, Stoltenborg JK, Kearney MA et al (1998) Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler Thromb Vasc Biol 18:423–431

    CAS  PubMed  Google Scholar 

  34. Shiratori Y, Okwu AK, Tabas I (1994) Free cholesterol loading of macrophages stimulates phosphatidylcholine biosynthesis and up-regulation of CTP:phosphocholine cytidylyltransferase. J Biol Chem 269:11337–11348

    CAS  PubMed  Google Scholar 

  35. Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N (2008) HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab 7(5):365–375

    Article  CAS  PubMed  Google Scholar 

  36. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC et al (2007) The role of different pathways in the release of cholesterol from macrophages. J Lipid Res 48:2453–2462

    Article  CAS  PubMed  Google Scholar 

  37. Duong M-N, Jin W, Zanotti I, Favari E, Rothblat GH (2006) The relative contributions of ABCA1 and SR-BI to cholesterol efflux to serum from fibroblasts and macrophages. Arterioscler Thromb Vasc Biol 26:541–547

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginny Kellner-Weibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kellner-Weibel, G., de la Llera-Moya, M., Sankaranarayanan, S., Rothblat, G.H. (2010). In Vitro Studies and Mass Flux of Cholesterol Between Serum and Macrophages. In: Schaefer, E. (eds) High Density Lipoproteins, Dyslipidemia, and Coronary Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1059-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1059-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1058-5

  • Online ISBN: 978-1-4419-1059-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics