Skip to main content

Proteins

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

A protein is a linear chain built from 20 amino acids [1]–[6]. (A few rare amino acids occur occasionally, but we will not discuss them.) The chain contains at the order of 100 to 200 amino acids. Of particular interest are the globular proteins, which act, for instance, as enzymes (catalysis). In the proper solvent, these systems fold into the native protein, as sketched in Fig. 4.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Dickerson and I. Geis. The Structure Action of Proteins. Benjamin/Cummings, Menlo Park, CA, 1969.

    Google Scholar 

  2. J. M. Berg, J. L. Tymoczko, and L. Stryer. Biochemistry, 6th edition. W. H. Freeman, New York, 2006.

    Google Scholar 

  3. C. R. Cantor and P. R. Schimmel. Biophysical Chemistry. W. H. Freeman, San Francisco, 1980. 3 vols.

    Google Scholar 

  4. C. Brändén and J. Tooze. Introduction to Protein Structure. Garland Science, New York, 1991.

    Google Scholar 

  5. G. E. Schulz and R. H. Schirmer. Principles of Protein Structure. Springer, New York, 1996.

    Google Scholar 

  6. G. A. Petsko and D. Ringe. Protein Structure and Function. New Science Press, London, 2004.

    Google Scholar 

  7. For a review see L. Keszthelyi, Origin of the asymmetry of biomolecules and weal interaction, Origins of Life, 8:299–340, 1977.

    Google Scholar 

  8. C. Fenselau. Beyond gene sequencing: Analysis of protein structure with mass spectrometry. Ann. Rev. Biophys. Biophys. Chem., 20:205–20, 1991.

    Article  Google Scholar 

  9. P. L. Ferguson and R. D. Smith. Proteome analysis by mass spectrometry. Ann. Rev. Biophys. Biomol. Struct., 32:399–424, 2003.

    Article  Google Scholar 

  10. P. C. Hanawalt and R. H. Hanes, editors. The Chemical Basis of Life. W. H. Freeman, San Francisco, 1973. Readings from Scientific American.

    Google Scholar 

  11. http://www.rcsb.org/pdp/.

  12. K. M. Smith, editor. Porphyrins and Metalloporphyrins. Elsevier, New York, 1975.

    Google Scholar 

  13. D. Dolphin, editor. The Porphyrins. Academic Press, New York, 1979. 7 vols.

    Google Scholar 

  14. A. B. P. Lever and H. B. Gray, editors. Iron Porphyrins. Addison-Wesley, New York, 1983. 3 vols.

    Google Scholar 

  15. R. E. Dickerson and I. Geis. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin-Cummings, Menlo Park, CA, 1983.

    Google Scholar 

  16. H. Frauenfelder, B. H. McMahon, R. H. Austin, K. Chu, and J. T. Groves. The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc. Natl. Acad. Sci. USA, 98:2370–74, 2001.

    Article  ADS  Google Scholar 

  17. http://www.ncbi.nlm.nih.gov/RefSeq/.

  18. F. M. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng., 6:151–76, 1977.

    Article  Google Scholar 

  19. J. A. Berzofsky. Intrinsic and extrinsic factors in protein antigenic structure. Science, 229:932–40, 1985.

    Article  ADS  Google Scholar 

  20. H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell. Molecular Cell Biology, 3rd edition. W. H. Freeman, New York, 1995.

    Google Scholar 

  21. M. F. Perutz. The hemoglobin molecule. Sci. Amer., 211(11):2–14, 1964.

    Google Scholar 

  22. M. F. Perutz. Hemoglobin structure and respiratory transport. Sci. Amer., 239(6):92–125, 1978.

    Article  Google Scholar 

  23. M. Weissbluth. Hemoglobin. Springer, New York, 1974.

    Book  Google Scholar 

  24. M. F. Perutz. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophysics, 22:139–236, 1989. Reprinted as Mechanisms of Cooperativity and Allosteric Regulation in Proteins, Cambridge Univ. Press, Cambridge, 1990.

    Article  Google Scholar 

  25. R. A. Bogardt, B. N. Jones, F. E. Dwulet, W. H. Garner, L. D. Lehman, and F. R. N. Gurd. Evolution of the amino acid substitution in the mammalian myoglobin gene. J. Mol. Evol., 15:197–218, 1980.

    Article  Google Scholar 

  26. M. F. Perutz. Species adaptation in a protein molecule. Mol. Bio. Evol., 1:1–28, 1983.

    Google Scholar 

  27. A. C. T. North and J. E. Lydon. The evolution of biological macromolecules. Contemp. Phys., 25:381–93, 1984.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frauenfelder, H. (2010). Proteins. In: Chan, S., Chan, W. (eds) The Physics of Proteins. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1044-8_4

Download citation

Publish with us

Policies and ethics