Skip to main content

Microtubule Organization in the Phragmoplast

  • Chapter
  • First Online:

Part of the book series: Advances in Plant Biology ((AIPB,volume 2))

Abstract

The phragmoplast harnesses the actions of microtubules and actin microfilaments to deliver Golgi-derived vesicles for the assembly of the cell plate which divides the cytoplasm of the mother cell. This review emphasizes on how microtubules are organized in the phragmoplast to allow cytokinesis to take place in a spatially and temporally regulated fashion. The phragmoplast microtubule array consists of two mirrored sets of anti-parallel microtubules with their plus ends facing the division site. More and more proteins have been found to be associated with the phragmoplast, especially in the categories of microtubule-associated proteins or MAPs and microtubule-based motor kinesins. They exert different regulatory roles in making the phragmoplast microtubule array. The evolutionarily conserved γ-tubulin complex and its interacting proteins are responsible for microtubule nucleation in order to generate new microtubules. The plus ends of anti-parallel microtubules at the cell division site are cross-linked by one or more proteins in the MAP65 family. At the division site, the Kinesin-12 motors keep the microtubule plus ends in position by sliding newly polymerized microtubule segments apart. Proteins in the conserved end-binding protein 1 (EB1) and MAP215 families promote microtubule polymerization and stabilization and maintain the integrity of the phragmoplast microtubule array. The functions of these factors are orchestrated to establish this highly dynamic microtubule array which undergoes continuous reorganization. We propose that there are two classes of microtubules in the phragmoplast, interdigitating microtubules (IMTs) and non-IMTs. Bundles of IMTs are surrounded by non-IMTs to form an array of a mini-phragmoplast. During cytokinesis, microtubules in old mini-phragmoplasts are disassembled in the central region upon the completion of vesicle delivery. In the meantime, new mini-phragmoplast microtubule arrays are born toward the periphery of the phragmoplast until the cell plate is completely assembled. Questions like how microtubule depolymerization at the minus end is regulated remain to be answered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akhmanova A, Steinmetz MO (2008) Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9:309–322

    Article  CAS  PubMed  Google Scholar 

  2. Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007) The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19:2763–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110:179–189

    Article  CAS  PubMed  Google Scholar 

  5. Asada T, Shibaoka H (1994) Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells. J Cell Sci 107:2249–2257

    Article  CAS  PubMed  Google Scholar 

  6. Asada T, Sonobe S, Shibaoka H (1991) Microtubule translocation in the cytokinetic apparatus of cultured tobacco cells. Nature 350:238–241

    Article  CAS  Google Scholar 

  7. Austin JR, Segui-Simarro JM, Staehelin LA (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118:3895–3903

    Article  CAS  PubMed  Google Scholar 

  8. Bajer AS, Smirnova EA, Mole-Bajer J (1993) Microtubule-converging centers-implications for microtubule dynamics in higher plants. In: Vig BK (ed) Chromosome segregation and aneuploidy. Springer, Berlin, pp 225–239

    Chapter  Google Scholar 

  9. Bannigan A, Scheible W-R, Lukowitz W, Fagerstrom C, Wadsworth P, Somerville C, Baskin TI (2007) A conserved role for kinesin-5 in plant mitosis. J Cell Sci 120:2819–2827

    Article  CAS  PubMed  Google Scholar 

  10. Barroso C, Chan J, Allan V, Doonan J, Hussey P, Lloyd C (2000) Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J 24:859–868

    Article  CAS  PubMed  Google Scholar 

  11. Bednarek SY, Falbel TG (2002) Membrane trafficking during plant cytokinesis. Traffic 3:621–629

    Article  CAS  PubMed  Google Scholar 

  12. Binarova P, Cenklova V, Prochazkova J, Doskocilova A, Volc J, Vrlik M, Bogre L (2006) γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18:1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bisgrove S, Hable W, Kropf D (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136:3855–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bisgrove SR, Lee Y-RJ, Liu B, Peters N, Kropf DL (2008) The microtubule plus-end binding protein EB1 functions in root responses to touch and gravity signals in Arabidopsis. Plant Cell 20:396–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bowser J, Reddy ASN (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12:1429–1437

    Article  CAS  PubMed  Google Scholar 

  16. Brown RC, Lemmon BE (1992) Cytoplasamic domain: a model for spatial control of cytokinesis in reproductive cells of plants. EMSA Bull 22:48–53

    Google Scholar 

  17. Burk DH, Liu B, Zhong R, Morrison WH, Ye Z-H (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Buschmann H, Chan J, Sanchez-Pulido L, Andrade-Navarro MA, Doonan JH, Lloyd CW (2006) Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion. Curr Biol 16:1938–1943

    Article  CAS  PubMed  Google Scholar 

  19. Buschmann H, Fabri CO, Hauptmann M, Hutzler P, Laux T, Lloyd CW, Schäffner AR (2004) Helical growth of the Arabidopsis mutant tortifolia1 reveals a plant-specific microtubule-associated protein. Curr Biol 14:1515–1521

    Article  CAS  PubMed  Google Scholar 

  20. Caillaud M-C, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B (2008) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 19:423–437

    Article  CAS  Google Scholar 

  21. Chan J, Calder GM, Doonan JH, Lloyd CW (2003) EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat Cell Biol 5:967–971

    Article  CAS  PubMed  Google Scholar 

  22. Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eleftheriou EP, Baskin TI, Hepler PK (2005) Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant Cell Physiol 46:671–675

    Article  CAS  PubMed  Google Scholar 

  24. Euteneuer U, McIntosh JR (1980) Polarity of midbody and phragmoplast microtubules. J Cell Biol 87:509–515

    Article  CAS  PubMed  Google Scholar 

  25. Gaillard J, Neumann E, Van Damme D, Stoppin-Mellet V, Ebel C, Barbier E, Geelen D, Vantard M (2008) Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19:4534–4544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goshima G, Kimura A (2010) New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 22:44–49

    Article  CAS  PubMed  Google Scholar 

  27. Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gunawardane RN, Martin OC, Zheng YX (2003) Characterization of a new γTuRC subunit with WD repeats. Mol Biol Cell 14:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo L, Ho C-MK, Kong Z, Lee Y-RJ, Qian Q, Liu B (2009) Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. Ann Bot 103:387–402

    Article  CAS  PubMed  Google Scholar 

  30. Hamada T (2007) Microtubule-associated proteins in higher plants. J Plant Res 120:79–98

    Article  CAS  PubMed  Google Scholar 

  31. Hamada T, Igarashi H, Itoh TJ, Shimmen T, Sonobe S (2004) Characterization of a 200 kDa microtubule-associated protein of tobacco BY-2 cells, a member of the XMAP215/MOR1 family. Plant Cell Physiol 45:1233–1242

    Article  CAS  PubMed  Google Scholar 

  32. Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus katherinae Baker. J Cell Biol 38:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiwatashi Y, Obara M, Sato Y, Fujita T, Murata T, Hasebe M (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20:3094–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong Z, Verma DPS (2007) Molecular analysis of the cell plate forming machinery. In: Verma DPS, Hong Z (eds) Cell division control in plants. Springer, Berlin, pp 303–320

    Chapter  Google Scholar 

  35. Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 107:775–784

    Article  PubMed  Google Scholar 

  36. Jürgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  CAS  Google Scholar 

  37. Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    Article  PubMed  CAS  Google Scholar 

  38. Jürgens G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15:277–283

    Article  PubMed  CAS  Google Scholar 

  39. Kaloriti D, Galva C, Parupalli C, Khalifa N, Galvin M, Sedbrook JC (2007) Microtubule associated proteins in plants and the processes they manage. J Integr Plant Biol 49:1164–1173

    Article  CAS  Google Scholar 

  40. Kapitein LC, Janson ME, van den Wildenberg S, Hoogenraad CC, Schmidt CF, Peterman EJG (2008) Microtubule-driven multimerization recruits ase1p onto overlapping microtubules. Curr Biol 18:1713–1717

    Article  CAS  PubMed  Google Scholar 

  41. Kawamura E, Himmelspach R, Rashbrooke MC, Whittington AT, Gale KR, Collings DA, Wasteneys GO (2006) MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol 140:102–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kirik V, Herrmann U, Parupalli C, Sedbrook JC, Ehrhardt DW, Hülskamp M (2007) CLASP localizes in two discrete patterns on cortical microtubules and is required for cell morphogenesis and cell division in Arabidopsis. J Cell Sci 120:4416–4425

    Article  CAS  PubMed  Google Scholar 

  43. Komaki S, Abe T, Coutuer S, Inzé D, Russinova E, Hashimoto T (2010) Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J Cell Sci 123:451–459

    Article  CAS  PubMed  Google Scholar 

  44. Kong Z, Hotta T, Lee YR, Horio T, Liu B (2010) The γ-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. Plant Cell 22:191–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korolev AV, Chan J, Naldrett MJ, Doonan JH, Lloyd CW (2005) Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells. Plant J 42:547–555

    Article  CAS  PubMed  Google Scholar 

  46. Krupnova T, Sasabe M, Ghebreghiorghis L, Gruber CW, Hamada T, Dehmel V, Strompen G, Stierhof YD, Lukowitz W, Kemmerling B, Machida Y, Hashimoto T, Mayer U, Jürgens G (2009) Microtubule-associated kinase-like protein RUNKEL needed for cell plate expansion in Arabidopsis cytokinesis. Curr Biol 19:518–523

    Article  CAS  PubMed  Google Scholar 

  47. Krysan P, Jester P, Gottwald J, Sussman M (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee J, Das A, Yamaguchi M, Hashimoto J, Tsutsumi N, Uchimiya H, Umeda M (2003) Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J 34:417–425

    Article  CAS  PubMed  Google Scholar 

  50. Lee Y-RJ, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee YRJ, Li Y, Liu B (2007) Two Arabidopsis phragmoplast-associated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell 19:2595–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee YRJ, Liu B (2000) Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol 10:797–800

    Article  CAS  PubMed  Google Scholar 

  53. Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu B, Joshi HC, Palevitz BA (1995) Experimental manipulation of γ-tubulin distribution in Arabidopsis using anti-microtubule drugs. Cell Motil Cytoskeleton 31:113–129

    Article  CAS  PubMed  Google Scholar 

  55. Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) γ-Tubulin in Arabidopsis-gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu B, Marc J, Joshi HC, Palevitz BA (1993) A γ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  57. Liu B, Palevitz BA (1996) Localization of a kinesin-like protein in generative cells of tobacco. Protoplasma 195:78–89

    Article  CAS  Google Scholar 

  58. Liu L, Wiese C (2008) Xenopus NEDD1 is required for microtubule organization in Xenopus egg extracts. J Cell Sci 121:578–589

    Article  CAS  PubMed  Google Scholar 

  59. Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 7:147–152

    Article  CAS  PubMed  Google Scholar 

  60. Lüders J, Patel UK, Stearns T (2006) GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8:137–147

    Article  PubMed  CAS  Google Scholar 

  61. Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC (2003) Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113:891–904

    Article  CAS  PubMed  Google Scholar 

  62. Mao GJ, Chan J, Calder G, Doonan JH, Lloyd CW (2005) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43:469–478

    Article  CAS  PubMed  Google Scholar 

  63. Marc J, Granger CL, Brincat J, Fisher DD, Kao T-h, McCubbin AG, Cyr RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10:1927–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Müller S, Han S, Smith LG (2006) Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr Biol 16:888–894

    Article  PubMed  CAS  Google Scholar 

  65. Müller S, Smertenko A, Wagner V, Heinrich M, Hussey P, Hauser M (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Murata T, Hasebe M (2007) Microtubule-dependent microtubule nucleation in plant cells. J Plant Res 120:73–78

    Article  CAS  PubMed  Google Scholar 

  67. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  CAS  PubMed  Google Scholar 

  68. Murata T, Tanahashi T, Nishiyama T, Yamaguchi K, Hasebe M (2007) How do plants organize microtubules without a centrosome? J Integr Plant Biol 49:1154–1163

    Article  Google Scholar 

  69. Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16:1178–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakajima K, Kawamura T, Hashimoto T (2006) Role of the SPIRAL1 gene family in anisotropic growth of Arabidopsis thaliana. Plant Cell Physiol 47:513–522

    Article  CAS  PubMed  Google Scholar 

  71. Nakamura M, Hashimoto T (2009) A mutation in the Arabidopsis γ-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122:2208–2217

    Article  CAS  PubMed  Google Scholar 

  72. Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    Article  CAS  PubMed  Google Scholar 

  74. Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111

    Article  CAS  PubMed  Google Scholar 

  75. Oh SA, Pal MD, Park SK, Johnson JA, Twell D (2010) The tobacco MAP215/Dis1-family protein TMBP200 is required for the functional organization of microtubule arrays during male germline establishment. J Exp Bot 61:969–981

    Article  CAS  PubMed  Google Scholar 

  76. Oka M, Yanagawa Y, Asada T, Yoneda A, Hasezawa S, Sato T, Nakagawa H (2004) Inhibition of proteasome by MG-132 treatment causes extra phragmoplast formation and cortical microtubule disorganization during M/G1 transition in synchronized tobacco cells. Plant Cell Physiol 45:1623–1632

    Article  CAS  PubMed  Google Scholar 

  77. Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K, Marks MD (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Otegui M, Staehelin LA (2000) Cytokinesis in flowering plants: more than one way to divide a cell. Curr Opin Plant Biol 3:493–502

    Article  CAS  PubMed  Google Scholar 

  79. Otegui M, Staehelin LA (2000) Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. Plant Cell 12:933–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Otegui MS, Verbrugghe KJ, Skop AR (2005) Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 15:404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pan R, Lee YRJ, Liu B (2004) Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220:156–164

    Article  CAS  PubMed  Google Scholar 

  82. Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC, Guerche P, Bouchez D (2006) γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18:1412–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Perrin RM, Wang Y, Yuen CY, Will J, Masson PH (2007) WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana. Plant J 49:961–971

    Article  CAS  PubMed  Google Scholar 

  84. Pickett-Heaps JD, Gunning BE, Brown RC, Lemmon BE, Cleary AL (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell division. Am J Bot 86:153–172

    Article  CAS  PubMed  Google Scholar 

  85. Pignocchi C, Minns GE, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd CW, Doonan JH, Hills MJ (2009) ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell 21:90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Roll-Mecak A, McNally FJ (2010) Microtubule-severing enzymes. Curr Opin Cell Biol 22:96–103

    Article  CAS  PubMed  Google Scholar 

  89. Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells – a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  CAS  PubMed  Google Scholar 

  90. Sanderfoot AA (2007) Vesicle traffic at cytokinesis. In: Verma DPS, Hong Z (eds) Cell division control in plants. Springer, Berlin, pp 289–302

    Chapter  Google Scholar 

  91. Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570

    Article  CAS  PubMed  Google Scholar 

  92. Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sedbrook JC, Ehrhardt DW, Fisher SE, Scheible WR, Somerville CR (2004) The Arabidopsis SKU6/SPIRAL1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16:1506–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Seguí-Simarro JM, Otegui MS, Austin JR, Staehelin LA (2007) Plant cytokinesis-insights gained from electron tomography studies. In: Verma DPS, Hong Z (eds) Cell division control in plants. Springer, Berlin, pp 251–287

    Chapter  Google Scholar 

  95. Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard JL, Schmit AC (2007) Arabidopsis GCP2 and GCP3 are part of a soluble gamma-tubulin complex and have nuclear envelope targeting domains. Plant J 52:322–331

    Article  CAS  PubMed  Google Scholar 

  96. Shoji T, Narita NN, Hayashi K, Asada J, Hamada T, Sonobe S, Nakajima K, Hashimoto T (2004) Plant-specific microtubule-associated protein SPIRAL2 is required for anisotropic growth in Arabidopsis. Plant Physiol 136:3933–3944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang C-J, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    Article  CAS  PubMed  Google Scholar 

  98. Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

    Article  CAS  PubMed  Google Scholar 

  99. Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Smith LG (2002) Plant cytokinesis: motoring to the finish. Curr Biol 12:R206–R208

    Article  CAS  PubMed  Google Scholar 

  102. Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84:821–824

    Article  CAS  PubMed  Google Scholar 

  103. Steigemann P, Gerlich DW (2009) Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 19:606–616

    Article  CAS  PubMed  Google Scholar 

  104. Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jurgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12:153–158

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    Article  CAS  PubMed  Google Scholar 

  106. Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci USA 106:6998–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Van Damme D, Bouget FY, Van Poucke K, Inze D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    Article  PubMed  CAS  Google Scholar 

  109. Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    Article  CAS  PubMed  Google Scholar 

  111. Vantard M, Levilliers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci USA 87:8825–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Verma DPS (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784

    Article  CAS  PubMed  Google Scholar 

  113. Vos JW, Pieuchot L, Evrard JL, Janski N, Bergdoll M, de Ronde D, Perez LH, Sardon T, Vernos I, Schmit AC (2008) The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell 20:2783–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Vos JW, Safadi F, Reddy ASN, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weingartner M, Binarova P, Drykova D, Schweighofer A, David JP, Heberle-Bors E, Doonan J, Bögre L (2001) Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis. Plant Cell 13:1929–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weingartner M, Criqui MC, Mészáros T, Binarova P, Schmit AC, Helfer A, Derevier A, Erhardt M, Bögre L, Genschik P (2004) Expression of a nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplast. Plant Cell 16:643–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613

    Article  CAS  PubMed  Google Scholar 

  118. Wu G, Lin YT, Wei R, Chen Y, Shan Z, Lee WH (2008) Hice1, a novel microtubule-associated protein required for maintenance of spindle integrity and chromosomal stability in human cells. Mol Cell Biol 28:3652–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yanagawa Y, Hasezawa S, Kumagai F, Oka M, Fujimuro M, Naito T, Makino T, Yokosawa H, Tanaka K, Komamine A, Hashimoto J, Sato T, Nakagawa H (2002) Cell-cycle dependent dynamic change of 26S proteasome distribution in tobacco BY-2 cells. Plant Cell Physiol 43:604–613

    Article  CAS  PubMed  Google Scholar 

  120. Yang C, Spielman M, Coles J, Li Y, Ghelani S, Bourdon V, Brown R, Lemmon B, Scott R, Dickinson H (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240

    Article  CAS  PubMed  Google Scholar 

  121. Yasuhara H, Shibaoka H (2000) Inhibition of cell-plate formation by brefeldin A inhibited the depolymerization of microtubules in the central region of the phragmoplast. Plant Cell Physiol 41:300–310

    Article  CAS  PubMed  Google Scholar 

  122. Zeng CJ, Lee YR, Liu B (2009) The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 21:1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang DH, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells – confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87:8820–8824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu H, Coppinger JA, Jang CY, Yates JR, Fang G (2008) FAM29A promotes microtubule amplification via recruitment of the NEDD1-gamma-tubulin complex to the mitotic spindle. J Cell Biol 183:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Fengli Guo for producing the data in Fig. 9.1. Our studies of plant cell division were supported by the National Science Foundation (NSF) under the grant MCB-0920454 and by the U.S. Department of Energy (DOE) under the contract DE-FG02-04ER15554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, B., Hotta, T., Ho, CM.K., Lee, YR.J. (2011). Microtubule Organization in the Phragmoplast. In: Liu, B. (eds) The Plant Cytoskeleton. Advances in Plant Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0987-9_9

Download citation

Publish with us

Policies and ethics