Skip to main content

Signaling to the Cytoskeleton in Diffuse Cell Growth

  • Chapter
  • First Online:
The Plant Cytoskeleton

Part of the book series: Advances in Plant Biology ((AIPB,volume 2))

  • 1110 Accesses

Abstract

Non-mobile plant cells must expand to achieve its final shape. Polarized diffuse growth is a common mode of cell expansion adopted by most plant cells, in which cell membrane expansion occurs throughout the entire cell surface while the direction of cell expansion is spatially controlled by localized changes in cell wall extensibility. Although the mechanisms underlying these changes are not clear, it is generally surmised that these changes are modulated by the reorganization and dynamics of the cytoskeleton in responses to growth signals. During plant development, endogenous developmental signals such as mechanical forces and plant hormones are proposed to regulate the cytoskeleton by signaling to cytoskeleton-associated proteins. In this review, we summarize known endogenous developmental signals and their signaling pathways in the control of cytoskeletal re-organization and dynamics that impinge upon polarized diffuse cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  2. Baskin TI, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganize cortical microtubules. Plant Physiol 113:493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Basu D, El-Assal Sel D, Le J, Mallery EL, Szymanski DB (2004) Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development. Development 131:4345–4355

    Article  CAS  PubMed  Google Scholar 

  4. Basu D, Le J, Zakharova T, Mallery EL, Szymanski DB (2008) A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes. Proc Natl Acad Sci USA 105:4044–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8:494–500

    Article  CAS  PubMed  Google Scholar 

  6. Bouquin T, Mattsson O, Naested H, Foster R, Mundy J (2003) The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. J Cell Sci 116:791–801

    Article  CAS  PubMed  Google Scholar 

  7. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  8. Brembu T, Winge P, Bones AM (2005) Catching the WAVEs of plant actin regulation. J Plant Growth Regul 24:55–66

    Article  CAS  Google Scholar 

  9. Brembu T, Winge P, Seem M, Bones AM (2004) NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis. Plant Cell 16:2335–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D (2002) The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14:833–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campanoni P, Nick P (2005) Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2, 4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol 137:939–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant. Planta 212:673–683

    Article  CAS  PubMed  Google Scholar 

  14. Catterou M, Dubois F, Schaller H, Aubanelle L, Vilcot B, Sangwan-Norreel BS, Sangwan RS (2001) Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I.Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the delta 7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212:659–672

    Article  CAS  PubMed  Google Scholar 

  15. Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13

    Article  PubMed  CAS  Google Scholar 

  16. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  17. Chilley PM, Casson SA, Tarkowski P, Hawkins N, Wang KL, Hussey PJ, Beale M, Ecker JR, Sandberg GK, Lindsey K (2006) The POLARIS peptide of Arabidopsis regulates auxin transport and root growth via effects on ethylene signaling. Plant Cell 18:3058–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Deeks MJ, Hussey PJ (2005) Arp2/3 and SCAR: plants move to the fore. Nat Rev Mol Cell Biol 6:954–964

    Article  CAS  PubMed  Google Scholar 

  20. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970

    Article  CAS  PubMed  Google Scholar 

  21. Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG (2006) BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 133:1091–1100

    Article  CAS  PubMed  Google Scholar 

  22. Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dugardeyn J, Vandenbussche F, Van Der Straeten D (2008) To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis? J Exp Bot 59:1–16

    Article  CAS  PubMed  Google Scholar 

  24. Dumais J (2009) Plant morphogenesis: a role for mechanical signals. Curr Biol 19:R207–R208

    Article  CAS  PubMed  Google Scholar 

  25. Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793

    Article  CAS  PubMed  Google Scholar 

  26. El-Din El-Assal S, Le J, Basu D, Mallery EL, Szymanski DB (2004) DISTORTED2 encodes an ARPC2 subunit of the putative Arabidopsis ARP2/3 complex. Plant J 38:526–538

    Article  PubMed  CAS  Google Scholar 

  27. Etienne-Manneville S (2004) Actin and microtubules in cell motility: which one is in control? Traffic 5:470–477

    Article  CAS  PubMed  Google Scholar 

  28. Fu Y (2010) ROP GTPases and the cytoskeleton. In: Yalovsky S (ed) Integrated G proteins signaling in plants. Springer, Berlin

    Google Scholar 

  29. Fu Y (2010) The actin cytoskeleton and signaling network during pollen tube tip growth. J Integr Plant Biol 52(2):131–137

    Article  CAS  PubMed  Google Scholar 

  30. Fu Y, Li H, Yang Z (2002) The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell 14:777–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu Y, Kawasaki T, Shimamoto K, Yang Z (2008) ROP/RAC GTPases. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 64–99

    Chapter  Google Scholar 

  32. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    Article  CAS  PubMed  Google Scholar 

  33. Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujino K, Koda Y, Kikuta Y (1995) Reorientation of cortical microtubules in the sub-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol 36:891–895

    Article  CAS  Google Scholar 

  35. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169:127–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655

    Article  CAS  PubMed  Google Scholar 

  37. Hashimoto T, Kato T (2006) Cortical control of plant microtubules. Curr Opin Plant Biol 9:5–11

    Article  CAS  PubMed  Google Scholar 

  38. Holweg C, Susslin C, Nick P (2004) Capturing in vivo dynamics of the actin cytoskeleton stimulated by auxin or light. Plant Cell Physiol 45:855–863

    Article  CAS  PubMed  Google Scholar 

  39. Hussey P, Hashimoto T (2008) The cytoskeleton and signal transduction: role and regulation of plant actin- and microtubule-binding proteins. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 244–272

    Chapter  Google Scholar 

  40. Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    Article  CAS  PubMed  Google Scholar 

  41. Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16:5385–5399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB (2001) One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13:1541–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kleine-Vehn J, Langowski L, Wisniewska J, Dhonukshe P, Brewer PB, Friml J (2008) Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant 1:1056–1066

    Article  CAS  PubMed  Google Scholar 

  44. Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17:947–952

    Article  CAS  PubMed  Google Scholar 

  45. Lee YJ, Yang Z (2008) Tip growth: signaling in the apical dome. Curr Opin Plant Biol 11:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Yang Z (2000) Rho GTPases and the Actin Cytoskeleton. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Dordrecht, Kluwer, pp 301–321

    Chapter  Google Scholar 

  48. Lipka V, Panstruga R (2005) Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8:625–631

    Article  CAS  PubMed  Google Scholar 

  49. Lodish H, Berk A, Kaiser C, Krieger M, Scott M, Bretscher A, Ploegh H, Matsudaira P (2007) Molecular cell biology. W.H. Freeman, New York

    Google Scholar 

  50. Malho R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006) Signalling pathways in pollen germination and tube growth. Protoplasma 228:21–30

    Article  CAS  PubMed  Google Scholar 

  51. Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43:469–478

    Article  CAS  PubMed  Google Scholar 

  52. Mathur J (2004) Cell shape development in plants. Trends Plant Sci 9:583–590

    Article  CAS  PubMed  Google Scholar 

  53. Mathur J, Spielhofer P, Kost B, Chua N (1999) The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development 126:5559–5568

    Article  CAS  PubMed  Google Scholar 

  54. Mathur J, Mathur N, Kernebeck B, Hulskamp M (2003) Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis. Plant Cell 15:1632–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mayumi K, Shibaoka H (1995) A possible double role for Brassinolide in the reorientation of cortical microtubules in the epidermal cells of azuki bean epicotyls. Plant Cell Physiol 36:173–181

    CAS  Google Scholar 

  56. Meier C, Bouquin T, Nielsen ME, Raventos D, Mattsson O, Rocher A, Schomburg F, Amasino RM, Mundy J (2001) Gibberellin response mutants identified by luciferase imaging. Plant J 25:509–519

    Article  CAS  PubMed  Google Scholar 

  57. Mita T, Shibaoka H (1984) Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma 119:100–109

    Article  Google Scholar 

  58. Mita T, Katsumi M (1986) Gibberellin control of microtubule arrangement in the mesocotyl epidermal cells of the d 5 mutant of Zea mays L. Plant Cell Physiol 24:109–117

    Article  Google Scholar 

  59. Mizuno K (1994) Inhibition of gibberellin-induced elongation, reorientation of cortical microtubules and change of isoform of tubulin in epicotyl segments of azuki bean by protein kinase inhibitors. Plant Cell Physiol 35:1149–1157

    Article  CAS  Google Scholar 

  60. Muday GK, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14:293–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muller S, Wright AJ, Smith LG (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19:180–188

    Article  PubMed  CAS  Google Scholar 

  62. Naoi K, Hashimoto T (2004) A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16:1841–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nick P, Schafer E, Furuya M (1992) Auxin redistribution during first positive phototropism in corn coleoptiles: microtubule reorientation and the Cholodny–Went theory. Plant Physiol 99:1302–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nick P, Han MJ, An G (2009) Auxin stimulates its own transport by shaping actin filaments. Plant Physiol 151:155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Plett JM, Mathur J, Regan S (2009) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60:3923–3933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  CAS  PubMed  Google Scholar 

  67. Qiu JL, Jilk R, Marks MD, Szymanski DB (2002) The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development. Plant Cell 14:101–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  CAS  PubMed  Google Scholar 

  69. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709

    Article  CAS  PubMed  Google Scholar 

  70. Rosales-Nieves AE, Johndrow JE, Keller LC, Magie CR, Pinto-Santini DM, Parkhurst SM (2006) Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol 8:367–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakoda M, Hasegawa K, Ishizuka K (1992) Mode of action of natural growth inhibitors in radish hypocotyl elongation-influence of raphanusanin on auxin-induced microtubule orientation. Physiol Plant 84:509–513

    Article  CAS  Google Scholar 

  72. Sasabe M, Machida Y (2006) MAP65: a bridge linking a MAP kinase to microtubule turnover. Curr Opin Plant Biol 9:563–570

    Article  CAS  PubMed  Google Scholar 

  73. Sasabe M, Machida Y (2008) Signaling by protein phosphorylation in cell division. In: Yang Z (ed) Intracellular signaling in plants. Wiley-Blackwell, Hoboken, pp 64–99

    Google Scholar 

  74. Sato M, Tsutsumi M, Ohtsubo A, Nishii K, Kuwabara A, Nagata T (2008) Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae). Planta 228:27–36

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16:1587–1609

    Article  CAS  PubMed  Google Scholar 

  76. Shibaoka H (1993) Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Aust J Plant Physiol 20:461–470

    CAS  Google Scholar 

  77. Shoji T, Suzuki K, Abe T, Kaneko Y, Shi H, Zhu JK, Rus A, Hasegawa PM, Hashimoto T (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol 47:1158–1168

    Article  CAS  PubMed  Google Scholar 

  78. Sibout R, Sukumar P, Hettiarachchi C, Holm M, Muday GK, Hardtke CS (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet 2:e202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    Article  CAS  PubMed  Google Scholar 

  80. Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20:3346–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bogre L, Hussey PJ (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119:3227–3237

    Article  CAS  PubMed  Google Scholar 

  82. Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16:2035–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Smith LG, Oppenheimer DG (2005) Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21:271–295

    Article  CAS  PubMed  Google Scholar 

  84. Stoppin-Mellet V, Gaillard J, Vantard M (2006) Katanin’s severing activity favors bundling of cortical microtubules in plants. Plant J 46:1009–1017

    Article  CAS  PubMed  Google Scholar 

  85. Sukumar P, Edwards KS, Rahman A, Delong A, Muday GK (2009) PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol 150:722–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112

    Article  CAS  PubMed  Google Scholar 

  87. Szymanski DB, Marks MD, Wick SM (1999) Organized F-actin is essential for normal trichome morphogenesis in Arabidopsis. Plant Cell 11:2331–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Takahashi H, Kawahara A, Inoue Y (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant Cell Physiol 44:932–940

    Article  CAS  PubMed  Google Scholar 

  89. Takesue K, Shibaoka H (1999) Auxin-induced longitudinal-to-transverse reorientation of cortical microtubules in nonelongating epidermal cells of azuki bean epidotyls. Protoplasma 206:27–30

    Article  CAS  Google Scholar 

  90. Uhrig JF, Mutondo M, Zimmermann I, Deeks MJ, Machesky LM, Thomas P, Uhrig S, Rambke C, Hussey PJ, Hulskamp M (2007) The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134:967–977

    Article  CAS  PubMed  Google Scholar 

  91. Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136:3956–3967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vandenbussche F, Verbelen JP, Van Der Straeten D (2005) Of light and length: regulation of hypocotyl growth in Arabidopsis. Bioessays 27:275–284

    Article  CAS  PubMed  Google Scholar 

  93. Waller F, Riemann M, Nick P (2002) A role for actin-driven secretion in auxin-induced growth. Protoplasma 219:72–81

    Article  CAS  PubMed  Google Scholar 

  94. Wang C, Li J, Yuan M (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol 48:1534–1547

    Article  CAS  PubMed  Google Scholar 

  95. Wang QY, Nick P (1998) The auxin response of actin is altered in the rice mutant Yin-Yang. Protoplasma 204:22–33

    Article  CAS  PubMed  Google Scholar 

  96. Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wasteneys GO (2000) The cytoskeleton and growth polarity. Curr Opin Plant Biol 3:503–511

    Article  CAS  PubMed  Google Scholar 

  98. Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722

    Article  CAS  PubMed  Google Scholar 

  99. Wenzel CL, Williamson RE, Wasteneys GO (2000) Gibberellin-induced changes in growth anisotropy precede gibberellin-dependent changes in cortical microtubule orientation in developing epidermal cells of barley leaves. Kinematic and cytological studies on a gibberellin-responsive dwarf mutant, M489. Plant Physiol 124:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wightman R, Turner SR (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52:742–751

    Article  CAS  PubMed  Google Scholar 

  101. Wightman R, Turner SR (2008) A novel mechanism important for the alignment of microtubules. Plant Signal Behav 3:238–239

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  103. Wu G, Gu Y, Li S, Yang Z (2001) A genome-wide analysis of Arabidopsis Rop-interactive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell 13:2841–2856

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and Rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell doi:10.1016/j.cell.2010.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang Z (2008) Cell polarity signaling in Arabidopsis. Annu Rev Cell Dev Biol 24:551–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zandomeni K, Schopfer P (1993) Reorientation of microtubules at the outer epidermal wall of maize coleoptiles by phytochrome, blue-light photoreceptor and auxin. Protoplasma 173:103–112

    Article  Google Scholar 

  108. Zheng ZL, Yang Z (2000) The Rop GTPase: an emerging signaling switch in plants. Plant Mol Biol 44:1–9

    Article  CAS  PubMed  Google Scholar 

  109. Zimmermann I, Saedler R, Mutondo M, Hulskamp M (2004) The Arabidopsis GNARLED gene encodes the NAP125 homolog and controls several actin-based cell shape changes. Mol Genet Genomics 272:290–296

    Article  CAS  PubMed  Google Scholar 

  110. Wasteneys GO, Yang Z (2004) The cytoskeleton becomes multidisciplinary. Plant Physiol 136:3853–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fu, Y., Yang, Z. (2011). Signaling to the Cytoskeleton in Diffuse Cell Growth. In: Liu, B. (eds) The Plant Cytoskeleton. Advances in Plant Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0987-9_10

Download citation

Publish with us

Policies and ethics